| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474 |
- /* Originally written by Bodo Moeller for the OpenSSL project.
- * ====================================================================
- * Copyright (c) 1998-2005 The OpenSSL Project. All rights reserved.
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions
- * are met:
- *
- * 1. Redistributions of source code must retain the above copyright
- * notice, this list of conditions and the following disclaimer.
- *
- * 2. Redistributions in binary form must reproduce the above copyright
- * notice, this list of conditions and the following disclaimer in
- * the documentation and/or other materials provided with the
- * distribution.
- *
- * 3. All advertising materials mentioning features or use of this
- * software must display the following acknowledgment:
- * "This product includes software developed by the OpenSSL Project
- * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
- *
- * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
- * endorse or promote products derived from this software without
- * prior written permission. For written permission, please contact
- * openssl-core@openssl.org.
- *
- * 5. Products derived from this software may not be called "OpenSSL"
- * nor may "OpenSSL" appear in their names without prior written
- * permission of the OpenSSL Project.
- *
- * 6. Redistributions of any form whatsoever must retain the following
- * acknowledgment:
- * "This product includes software developed by the OpenSSL Project
- * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
- *
- * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
- * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
- * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
- * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
- * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
- * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
- * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
- * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
- * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
- * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
- * OF THE POSSIBILITY OF SUCH DAMAGE.
- * ====================================================================
- *
- * This product includes cryptographic software written by Eric Young
- * (eay@cryptsoft.com). This product includes software written by Tim
- * Hudson (tjh@cryptsoft.com).
- *
- */
- /* ====================================================================
- * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
- *
- * Portions of the attached software ("Contribution") are developed by
- * SUN MICROSYSTEMS, INC., and are contributed to the OpenSSL project.
- *
- * The Contribution is licensed pursuant to the OpenSSL open source
- * license provided above.
- *
- * The elliptic curve binary polynomial software is originally written by
- * Sheueling Chang Shantz and Douglas Stebila of Sun Microsystems
- * Laboratories. */
- #include <openssl/ec.h>
- #include <string.h>
- #include <openssl/bn.h>
- #include <openssl/err.h>
- #include <openssl/mem.h>
- #include <openssl/thread.h>
- #include "internal.h"
- #include "../../internal.h"
- // This file implements the wNAF-based interleaving multi-exponentiation method
- // at:
- // http://link.springer.com/chapter/10.1007%2F3-540-45537-X_13
- // http://www.bmoeller.de/pdf/TI-01-08.multiexp.pdf
- // Determine the modified width-(w+1) Non-Adjacent Form (wNAF) of 'scalar'.
- // This is an array r[] of values that are either zero or odd with an
- // absolute value less than 2^w satisfying
- // scalar = \sum_j r[j]*2^j
- // where at most one of any w+1 consecutive digits is non-zero
- // with the exception that the most significant digit may be only
- // w-1 zeros away from that next non-zero digit.
- static int8_t *compute_wNAF(const BIGNUM *scalar, int w, size_t *ret_len) {
- int window_val;
- int ok = 0;
- int8_t *r = NULL;
- int sign = 1;
- int bit, next_bit, mask;
- size_t len = 0, j;
- if (BN_is_zero(scalar)) {
- r = OPENSSL_malloc(1);
- if (!r) {
- OPENSSL_PUT_ERROR(EC, ERR_R_MALLOC_FAILURE);
- goto err;
- }
- r[0] = 0;
- *ret_len = 1;
- return r;
- }
- // 'int8_t' can represent integers with absolute values less than 2^7.
- if (w <= 0 || w > 7) {
- OPENSSL_PUT_ERROR(EC, ERR_R_INTERNAL_ERROR);
- goto err;
- }
- bit = 1 << w; // at most 128
- next_bit = bit << 1; // at most 256
- mask = next_bit - 1; // at most 255
- if (BN_is_negative(scalar)) {
- sign = -1;
- }
- len = BN_num_bits(scalar);
- // The modified wNAF may be one digit longer than binary representation
- // (*ret_len will be set to the actual length, i.e. at most
- // BN_num_bits(scalar) + 1).
- r = OPENSSL_malloc(len + 1);
- if (r == NULL) {
- OPENSSL_PUT_ERROR(EC, ERR_R_MALLOC_FAILURE);
- goto err;
- }
- window_val = scalar->d[0] & mask;
- j = 0;
- // If j+w+1 >= len, window_val will not increase.
- while (window_val != 0 || j + w + 1 < len) {
- int digit = 0;
- // 0 <= window_val <= 2^(w+1)
- if (window_val & 1) {
- // 0 < window_val < 2^(w+1)
- if (window_val & bit) {
- digit = window_val - next_bit; // -2^w < digit < 0
- #if 1 // modified wNAF
- if (j + w + 1 >= len) {
- // special case for generating modified wNAFs:
- // no new bits will be added into window_val,
- // so using a positive digit here will decrease
- // the total length of the representation
- digit = window_val & (mask >> 1); // 0 < digit < 2^w
- }
- #endif
- } else {
- digit = window_val; // 0 < digit < 2^w
- }
- if (digit <= -bit || digit >= bit || !(digit & 1)) {
- OPENSSL_PUT_ERROR(EC, ERR_R_INTERNAL_ERROR);
- goto err;
- }
- window_val -= digit;
- // Now window_val is 0 or 2^(w+1) in standard wNAF generation;
- // for modified window NAFs, it may also be 2^w.
- if (window_val != 0 && window_val != next_bit && window_val != bit) {
- OPENSSL_PUT_ERROR(EC, ERR_R_INTERNAL_ERROR);
- goto err;
- }
- }
- r[j++] = sign * digit;
- window_val >>= 1;
- window_val += bit * BN_is_bit_set(scalar, j + w);
- if (window_val > next_bit) {
- OPENSSL_PUT_ERROR(EC, ERR_R_INTERNAL_ERROR);
- goto err;
- }
- }
- if (j > len + 1) {
- OPENSSL_PUT_ERROR(EC, ERR_R_INTERNAL_ERROR);
- goto err;
- }
- len = j;
- ok = 1;
- err:
- if (!ok) {
- OPENSSL_free(r);
- r = NULL;
- }
- if (ok) {
- *ret_len = len;
- }
- return r;
- }
- // TODO: table should be optimised for the wNAF-based implementation,
- // sometimes smaller windows will give better performance
- // (thus the boundaries should be increased)
- static size_t window_bits_for_scalar_size(size_t b) {
- if (b >= 2000) {
- return 6;
- }
- if (b >= 800) {
- return 5;
- }
- if (b >= 300) {
- return 4;
- }
- if (b >= 70) {
- return 3;
- }
- if (b >= 20) {
- return 2;
- }
- return 1;
- }
- int ec_wNAF_mul(const EC_GROUP *group, EC_POINT *r,
- const EC_SCALAR *g_scalar_raw, const EC_POINT *p,
- const EC_SCALAR *p_scalar_raw, BN_CTX *ctx) {
- BN_CTX *new_ctx = NULL;
- const EC_POINT *generator = NULL;
- EC_POINT *tmp = NULL;
- size_t total_num = 0;
- size_t i, j;
- int k;
- int r_is_inverted = 0;
- int r_is_at_infinity = 1;
- size_t *wsize = NULL; // individual window sizes
- int8_t **wNAF = NULL; // individual wNAFs
- size_t *wNAF_len = NULL;
- size_t max_len = 0;
- size_t num_val = 0;
- EC_POINT **val = NULL; // precomputation
- EC_POINT **v;
- EC_POINT ***val_sub = NULL; // pointers to sub-arrays of 'val'
- int ret = 0;
- if (ctx == NULL) {
- ctx = new_ctx = BN_CTX_new();
- if (ctx == NULL) {
- goto err;
- }
- }
- BN_CTX_start(ctx);
- // Convert from |EC_SCALAR| to |BIGNUM|. |BIGNUM| is not constant-time, but
- // neither is the rest of this function.
- BIGNUM *g_scalar = NULL, *p_scalar = NULL;
- if (g_scalar_raw != NULL) {
- g_scalar = BN_CTX_get(ctx);
- if (g_scalar == NULL ||
- !bn_set_words(g_scalar, g_scalar_raw->words, group->order.top)) {
- goto err;
- }
- }
- if (p_scalar_raw != NULL) {
- p_scalar = BN_CTX_get(ctx);
- if (p_scalar == NULL ||
- !bn_set_words(p_scalar, p_scalar_raw->words, group->order.top)) {
- goto err;
- }
- }
- // TODO: This function used to take |points| and |scalars| as arrays of
- // |num| elements. The code below should be simplified to work in terms of |p|
- // and |p_scalar|.
- size_t num = p != NULL ? 1 : 0;
- const EC_POINT **points = p != NULL ? &p : NULL;
- BIGNUM **scalars = p != NULL ? &p_scalar : NULL;
- total_num = num;
- if (g_scalar != NULL) {
- generator = EC_GROUP_get0_generator(group);
- if (generator == NULL) {
- OPENSSL_PUT_ERROR(EC, EC_R_UNDEFINED_GENERATOR);
- goto err;
- }
- ++total_num; // treat 'g_scalar' like 'num'-th element of 'scalars'
- }
- wsize = OPENSSL_malloc(total_num * sizeof(wsize[0]));
- wNAF_len = OPENSSL_malloc(total_num * sizeof(wNAF_len[0]));
- wNAF = OPENSSL_malloc(total_num * sizeof(wNAF[0]));
- val_sub = OPENSSL_malloc(total_num * sizeof(val_sub[0]));
- // Ensure wNAF is initialised in case we end up going to err.
- if (wNAF != NULL) {
- OPENSSL_memset(wNAF, 0, total_num * sizeof(wNAF[0]));
- }
- if (!wsize || !wNAF_len || !wNAF || !val_sub) {
- OPENSSL_PUT_ERROR(EC, ERR_R_MALLOC_FAILURE);
- goto err;
- }
- // num_val will be the total number of temporarily precomputed points
- num_val = 0;
- for (i = 0; i < total_num; i++) {
- size_t bits;
- bits = i < num ? BN_num_bits(scalars[i]) : BN_num_bits(g_scalar);
- wsize[i] = window_bits_for_scalar_size(bits);
- num_val += (size_t)1 << (wsize[i] - 1);
- wNAF[i] =
- compute_wNAF((i < num ? scalars[i] : g_scalar), wsize[i], &wNAF_len[i]);
- if (wNAF[i] == NULL) {
- goto err;
- }
- if (wNAF_len[i] > max_len) {
- max_len = wNAF_len[i];
- }
- }
- // All points we precompute now go into a single array 'val'. 'val_sub[i]' is
- // a pointer to the subarray for the i-th point.
- val = OPENSSL_malloc(num_val * sizeof(val[0]));
- if (val == NULL) {
- OPENSSL_PUT_ERROR(EC, ERR_R_MALLOC_FAILURE);
- goto err;
- }
- OPENSSL_memset(val, 0, num_val * sizeof(val[0]));
- // allocate points for precomputation
- v = val;
- for (i = 0; i < total_num; i++) {
- val_sub[i] = v;
- for (j = 0; j < ((size_t)1 << (wsize[i] - 1)); j++) {
- *v = EC_POINT_new(group);
- if (*v == NULL) {
- goto err;
- }
- v++;
- }
- }
- if (!(v == val + num_val)) {
- OPENSSL_PUT_ERROR(EC, ERR_R_INTERNAL_ERROR);
- goto err;
- }
- if (!(tmp = EC_POINT_new(group))) {
- goto err;
- }
- // prepare precomputed values:
- // val_sub[i][0] := points[i]
- // val_sub[i][1] := 3 * points[i]
- // val_sub[i][2] := 5 * points[i]
- // ...
- for (i = 0; i < total_num; i++) {
- if (i < num) {
- if (!EC_POINT_copy(val_sub[i][0], points[i])) {
- goto err;
- }
- } else if (!EC_POINT_copy(val_sub[i][0], generator)) {
- goto err;
- }
- if (wsize[i] > 1) {
- if (!EC_POINT_dbl(group, tmp, val_sub[i][0], ctx)) {
- goto err;
- }
- for (j = 1; j < ((size_t)1 << (wsize[i] - 1)); j++) {
- if (!EC_POINT_add(group, val_sub[i][j], val_sub[i][j - 1], tmp, ctx)) {
- goto err;
- }
- }
- }
- }
- #if 1 // optional; window_bits_for_scalar_size assumes we do this step
- if (!EC_POINTs_make_affine(group, num_val, val, ctx)) {
- goto err;
- }
- #endif
- r_is_at_infinity = 1;
- for (k = max_len - 1; k >= 0; k--) {
- if (!r_is_at_infinity && !EC_POINT_dbl(group, r, r, ctx)) {
- goto err;
- }
- for (i = 0; i < total_num; i++) {
- if (wNAF_len[i] > (size_t)k) {
- int digit = wNAF[i][k];
- int is_neg;
- if (digit) {
- is_neg = digit < 0;
- if (is_neg) {
- digit = -digit;
- }
- if (is_neg != r_is_inverted) {
- if (!r_is_at_infinity && !EC_POINT_invert(group, r, ctx)) {
- goto err;
- }
- r_is_inverted = !r_is_inverted;
- }
- // digit > 0
- if (r_is_at_infinity) {
- if (!EC_POINT_copy(r, val_sub[i][digit >> 1])) {
- goto err;
- }
- r_is_at_infinity = 0;
- } else {
- if (!EC_POINT_add(group, r, r, val_sub[i][digit >> 1], ctx)) {
- goto err;
- }
- }
- }
- }
- }
- }
- if (r_is_at_infinity) {
- if (!EC_POINT_set_to_infinity(group, r)) {
- goto err;
- }
- } else if (r_is_inverted && !EC_POINT_invert(group, r, ctx)) {
- goto err;
- }
- ret = 1;
- err:
- if (ctx != NULL) {
- BN_CTX_end(ctx);
- }
- BN_CTX_free(new_ctx);
- EC_POINT_free(tmp);
- OPENSSL_free(wsize);
- OPENSSL_free(wNAF_len);
- if (wNAF != NULL) {
- for (i = 0; i < total_num; i++) {
- OPENSSL_free(wNAF[i]);
- }
- OPENSSL_free(wNAF);
- }
- if (val != NULL) {
- for (i = 0; i < num_val; i++) {
- EC_POINT_free(val[i]);
- }
- OPENSSL_free(val);
- }
- OPENSSL_free(val_sub);
- return ret;
- }
|