wnaf.c 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474
  1. /* Originally written by Bodo Moeller for the OpenSSL project.
  2. * ====================================================================
  3. * Copyright (c) 1998-2005 The OpenSSL Project. All rights reserved.
  4. *
  5. * Redistribution and use in source and binary forms, with or without
  6. * modification, are permitted provided that the following conditions
  7. * are met:
  8. *
  9. * 1. Redistributions of source code must retain the above copyright
  10. * notice, this list of conditions and the following disclaimer.
  11. *
  12. * 2. Redistributions in binary form must reproduce the above copyright
  13. * notice, this list of conditions and the following disclaimer in
  14. * the documentation and/or other materials provided with the
  15. * distribution.
  16. *
  17. * 3. All advertising materials mentioning features or use of this
  18. * software must display the following acknowledgment:
  19. * "This product includes software developed by the OpenSSL Project
  20. * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
  21. *
  22. * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
  23. * endorse or promote products derived from this software without
  24. * prior written permission. For written permission, please contact
  25. * openssl-core@openssl.org.
  26. *
  27. * 5. Products derived from this software may not be called "OpenSSL"
  28. * nor may "OpenSSL" appear in their names without prior written
  29. * permission of the OpenSSL Project.
  30. *
  31. * 6. Redistributions of any form whatsoever must retain the following
  32. * acknowledgment:
  33. * "This product includes software developed by the OpenSSL Project
  34. * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
  35. *
  36. * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
  37. * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  38. * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
  39. * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
  40. * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  41. * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
  42. * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
  43. * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
  44. * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
  45. * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
  46. * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
  47. * OF THE POSSIBILITY OF SUCH DAMAGE.
  48. * ====================================================================
  49. *
  50. * This product includes cryptographic software written by Eric Young
  51. * (eay@cryptsoft.com). This product includes software written by Tim
  52. * Hudson (tjh@cryptsoft.com).
  53. *
  54. */
  55. /* ====================================================================
  56. * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
  57. *
  58. * Portions of the attached software ("Contribution") are developed by
  59. * SUN MICROSYSTEMS, INC., and are contributed to the OpenSSL project.
  60. *
  61. * The Contribution is licensed pursuant to the OpenSSL open source
  62. * license provided above.
  63. *
  64. * The elliptic curve binary polynomial software is originally written by
  65. * Sheueling Chang Shantz and Douglas Stebila of Sun Microsystems
  66. * Laboratories. */
  67. #include <openssl/ec.h>
  68. #include <string.h>
  69. #include <openssl/bn.h>
  70. #include <openssl/err.h>
  71. #include <openssl/mem.h>
  72. #include <openssl/thread.h>
  73. #include "internal.h"
  74. #include "../../internal.h"
  75. // This file implements the wNAF-based interleaving multi-exponentiation method
  76. // at:
  77. // http://link.springer.com/chapter/10.1007%2F3-540-45537-X_13
  78. // http://www.bmoeller.de/pdf/TI-01-08.multiexp.pdf
  79. // Determine the modified width-(w+1) Non-Adjacent Form (wNAF) of 'scalar'.
  80. // This is an array r[] of values that are either zero or odd with an
  81. // absolute value less than 2^w satisfying
  82. // scalar = \sum_j r[j]*2^j
  83. // where at most one of any w+1 consecutive digits is non-zero
  84. // with the exception that the most significant digit may be only
  85. // w-1 zeros away from that next non-zero digit.
  86. static int8_t *compute_wNAF(const BIGNUM *scalar, int w, size_t *ret_len) {
  87. int window_val;
  88. int ok = 0;
  89. int8_t *r = NULL;
  90. int sign = 1;
  91. int bit, next_bit, mask;
  92. size_t len = 0, j;
  93. if (BN_is_zero(scalar)) {
  94. r = OPENSSL_malloc(1);
  95. if (!r) {
  96. OPENSSL_PUT_ERROR(EC, ERR_R_MALLOC_FAILURE);
  97. goto err;
  98. }
  99. r[0] = 0;
  100. *ret_len = 1;
  101. return r;
  102. }
  103. // 'int8_t' can represent integers with absolute values less than 2^7.
  104. if (w <= 0 || w > 7) {
  105. OPENSSL_PUT_ERROR(EC, ERR_R_INTERNAL_ERROR);
  106. goto err;
  107. }
  108. bit = 1 << w; // at most 128
  109. next_bit = bit << 1; // at most 256
  110. mask = next_bit - 1; // at most 255
  111. if (BN_is_negative(scalar)) {
  112. sign = -1;
  113. }
  114. len = BN_num_bits(scalar);
  115. // The modified wNAF may be one digit longer than binary representation
  116. // (*ret_len will be set to the actual length, i.e. at most
  117. // BN_num_bits(scalar) + 1).
  118. r = OPENSSL_malloc(len + 1);
  119. if (r == NULL) {
  120. OPENSSL_PUT_ERROR(EC, ERR_R_MALLOC_FAILURE);
  121. goto err;
  122. }
  123. window_val = scalar->d[0] & mask;
  124. j = 0;
  125. // If j+w+1 >= len, window_val will not increase.
  126. while (window_val != 0 || j + w + 1 < len) {
  127. int digit = 0;
  128. // 0 <= window_val <= 2^(w+1)
  129. if (window_val & 1) {
  130. // 0 < window_val < 2^(w+1)
  131. if (window_val & bit) {
  132. digit = window_val - next_bit; // -2^w < digit < 0
  133. #if 1 // modified wNAF
  134. if (j + w + 1 >= len) {
  135. // special case for generating modified wNAFs:
  136. // no new bits will be added into window_val,
  137. // so using a positive digit here will decrease
  138. // the total length of the representation
  139. digit = window_val & (mask >> 1); // 0 < digit < 2^w
  140. }
  141. #endif
  142. } else {
  143. digit = window_val; // 0 < digit < 2^w
  144. }
  145. if (digit <= -bit || digit >= bit || !(digit & 1)) {
  146. OPENSSL_PUT_ERROR(EC, ERR_R_INTERNAL_ERROR);
  147. goto err;
  148. }
  149. window_val -= digit;
  150. // Now window_val is 0 or 2^(w+1) in standard wNAF generation;
  151. // for modified window NAFs, it may also be 2^w.
  152. if (window_val != 0 && window_val != next_bit && window_val != bit) {
  153. OPENSSL_PUT_ERROR(EC, ERR_R_INTERNAL_ERROR);
  154. goto err;
  155. }
  156. }
  157. r[j++] = sign * digit;
  158. window_val >>= 1;
  159. window_val += bit * BN_is_bit_set(scalar, j + w);
  160. if (window_val > next_bit) {
  161. OPENSSL_PUT_ERROR(EC, ERR_R_INTERNAL_ERROR);
  162. goto err;
  163. }
  164. }
  165. if (j > len + 1) {
  166. OPENSSL_PUT_ERROR(EC, ERR_R_INTERNAL_ERROR);
  167. goto err;
  168. }
  169. len = j;
  170. ok = 1;
  171. err:
  172. if (!ok) {
  173. OPENSSL_free(r);
  174. r = NULL;
  175. }
  176. if (ok) {
  177. *ret_len = len;
  178. }
  179. return r;
  180. }
  181. // TODO: table should be optimised for the wNAF-based implementation,
  182. // sometimes smaller windows will give better performance
  183. // (thus the boundaries should be increased)
  184. static size_t window_bits_for_scalar_size(size_t b) {
  185. if (b >= 2000) {
  186. return 6;
  187. }
  188. if (b >= 800) {
  189. return 5;
  190. }
  191. if (b >= 300) {
  192. return 4;
  193. }
  194. if (b >= 70) {
  195. return 3;
  196. }
  197. if (b >= 20) {
  198. return 2;
  199. }
  200. return 1;
  201. }
  202. int ec_wNAF_mul(const EC_GROUP *group, EC_POINT *r,
  203. const EC_SCALAR *g_scalar_raw, const EC_POINT *p,
  204. const EC_SCALAR *p_scalar_raw, BN_CTX *ctx) {
  205. BN_CTX *new_ctx = NULL;
  206. const EC_POINT *generator = NULL;
  207. EC_POINT *tmp = NULL;
  208. size_t total_num = 0;
  209. size_t i, j;
  210. int k;
  211. int r_is_inverted = 0;
  212. int r_is_at_infinity = 1;
  213. size_t *wsize = NULL; // individual window sizes
  214. int8_t **wNAF = NULL; // individual wNAFs
  215. size_t *wNAF_len = NULL;
  216. size_t max_len = 0;
  217. size_t num_val = 0;
  218. EC_POINT **val = NULL; // precomputation
  219. EC_POINT **v;
  220. EC_POINT ***val_sub = NULL; // pointers to sub-arrays of 'val'
  221. int ret = 0;
  222. if (ctx == NULL) {
  223. ctx = new_ctx = BN_CTX_new();
  224. if (ctx == NULL) {
  225. goto err;
  226. }
  227. }
  228. BN_CTX_start(ctx);
  229. // Convert from |EC_SCALAR| to |BIGNUM|. |BIGNUM| is not constant-time, but
  230. // neither is the rest of this function.
  231. BIGNUM *g_scalar = NULL, *p_scalar = NULL;
  232. if (g_scalar_raw != NULL) {
  233. g_scalar = BN_CTX_get(ctx);
  234. if (g_scalar == NULL ||
  235. !bn_set_words(g_scalar, g_scalar_raw->words, group->order.top)) {
  236. goto err;
  237. }
  238. }
  239. if (p_scalar_raw != NULL) {
  240. p_scalar = BN_CTX_get(ctx);
  241. if (p_scalar == NULL ||
  242. !bn_set_words(p_scalar, p_scalar_raw->words, group->order.top)) {
  243. goto err;
  244. }
  245. }
  246. // TODO: This function used to take |points| and |scalars| as arrays of
  247. // |num| elements. The code below should be simplified to work in terms of |p|
  248. // and |p_scalar|.
  249. size_t num = p != NULL ? 1 : 0;
  250. const EC_POINT **points = p != NULL ? &p : NULL;
  251. BIGNUM **scalars = p != NULL ? &p_scalar : NULL;
  252. total_num = num;
  253. if (g_scalar != NULL) {
  254. generator = EC_GROUP_get0_generator(group);
  255. if (generator == NULL) {
  256. OPENSSL_PUT_ERROR(EC, EC_R_UNDEFINED_GENERATOR);
  257. goto err;
  258. }
  259. ++total_num; // treat 'g_scalar' like 'num'-th element of 'scalars'
  260. }
  261. wsize = OPENSSL_malloc(total_num * sizeof(wsize[0]));
  262. wNAF_len = OPENSSL_malloc(total_num * sizeof(wNAF_len[0]));
  263. wNAF = OPENSSL_malloc(total_num * sizeof(wNAF[0]));
  264. val_sub = OPENSSL_malloc(total_num * sizeof(val_sub[0]));
  265. // Ensure wNAF is initialised in case we end up going to err.
  266. if (wNAF != NULL) {
  267. OPENSSL_memset(wNAF, 0, total_num * sizeof(wNAF[0]));
  268. }
  269. if (!wsize || !wNAF_len || !wNAF || !val_sub) {
  270. OPENSSL_PUT_ERROR(EC, ERR_R_MALLOC_FAILURE);
  271. goto err;
  272. }
  273. // num_val will be the total number of temporarily precomputed points
  274. num_val = 0;
  275. for (i = 0; i < total_num; i++) {
  276. size_t bits;
  277. bits = i < num ? BN_num_bits(scalars[i]) : BN_num_bits(g_scalar);
  278. wsize[i] = window_bits_for_scalar_size(bits);
  279. num_val += (size_t)1 << (wsize[i] - 1);
  280. wNAF[i] =
  281. compute_wNAF((i < num ? scalars[i] : g_scalar), wsize[i], &wNAF_len[i]);
  282. if (wNAF[i] == NULL) {
  283. goto err;
  284. }
  285. if (wNAF_len[i] > max_len) {
  286. max_len = wNAF_len[i];
  287. }
  288. }
  289. // All points we precompute now go into a single array 'val'. 'val_sub[i]' is
  290. // a pointer to the subarray for the i-th point.
  291. val = OPENSSL_malloc(num_val * sizeof(val[0]));
  292. if (val == NULL) {
  293. OPENSSL_PUT_ERROR(EC, ERR_R_MALLOC_FAILURE);
  294. goto err;
  295. }
  296. OPENSSL_memset(val, 0, num_val * sizeof(val[0]));
  297. // allocate points for precomputation
  298. v = val;
  299. for (i = 0; i < total_num; i++) {
  300. val_sub[i] = v;
  301. for (j = 0; j < ((size_t)1 << (wsize[i] - 1)); j++) {
  302. *v = EC_POINT_new(group);
  303. if (*v == NULL) {
  304. goto err;
  305. }
  306. v++;
  307. }
  308. }
  309. if (!(v == val + num_val)) {
  310. OPENSSL_PUT_ERROR(EC, ERR_R_INTERNAL_ERROR);
  311. goto err;
  312. }
  313. if (!(tmp = EC_POINT_new(group))) {
  314. goto err;
  315. }
  316. // prepare precomputed values:
  317. // val_sub[i][0] := points[i]
  318. // val_sub[i][1] := 3 * points[i]
  319. // val_sub[i][2] := 5 * points[i]
  320. // ...
  321. for (i = 0; i < total_num; i++) {
  322. if (i < num) {
  323. if (!EC_POINT_copy(val_sub[i][0], points[i])) {
  324. goto err;
  325. }
  326. } else if (!EC_POINT_copy(val_sub[i][0], generator)) {
  327. goto err;
  328. }
  329. if (wsize[i] > 1) {
  330. if (!EC_POINT_dbl(group, tmp, val_sub[i][0], ctx)) {
  331. goto err;
  332. }
  333. for (j = 1; j < ((size_t)1 << (wsize[i] - 1)); j++) {
  334. if (!EC_POINT_add(group, val_sub[i][j], val_sub[i][j - 1], tmp, ctx)) {
  335. goto err;
  336. }
  337. }
  338. }
  339. }
  340. #if 1 // optional; window_bits_for_scalar_size assumes we do this step
  341. if (!EC_POINTs_make_affine(group, num_val, val, ctx)) {
  342. goto err;
  343. }
  344. #endif
  345. r_is_at_infinity = 1;
  346. for (k = max_len - 1; k >= 0; k--) {
  347. if (!r_is_at_infinity && !EC_POINT_dbl(group, r, r, ctx)) {
  348. goto err;
  349. }
  350. for (i = 0; i < total_num; i++) {
  351. if (wNAF_len[i] > (size_t)k) {
  352. int digit = wNAF[i][k];
  353. int is_neg;
  354. if (digit) {
  355. is_neg = digit < 0;
  356. if (is_neg) {
  357. digit = -digit;
  358. }
  359. if (is_neg != r_is_inverted) {
  360. if (!r_is_at_infinity && !EC_POINT_invert(group, r, ctx)) {
  361. goto err;
  362. }
  363. r_is_inverted = !r_is_inverted;
  364. }
  365. // digit > 0
  366. if (r_is_at_infinity) {
  367. if (!EC_POINT_copy(r, val_sub[i][digit >> 1])) {
  368. goto err;
  369. }
  370. r_is_at_infinity = 0;
  371. } else {
  372. if (!EC_POINT_add(group, r, r, val_sub[i][digit >> 1], ctx)) {
  373. goto err;
  374. }
  375. }
  376. }
  377. }
  378. }
  379. }
  380. if (r_is_at_infinity) {
  381. if (!EC_POINT_set_to_infinity(group, r)) {
  382. goto err;
  383. }
  384. } else if (r_is_inverted && !EC_POINT_invert(group, r, ctx)) {
  385. goto err;
  386. }
  387. ret = 1;
  388. err:
  389. if (ctx != NULL) {
  390. BN_CTX_end(ctx);
  391. }
  392. BN_CTX_free(new_ctx);
  393. EC_POINT_free(tmp);
  394. OPENSSL_free(wsize);
  395. OPENSSL_free(wNAF_len);
  396. if (wNAF != NULL) {
  397. for (i = 0; i < total_num; i++) {
  398. OPENSSL_free(wNAF[i]);
  399. }
  400. OPENSSL_free(wNAF);
  401. }
  402. if (val != NULL) {
  403. for (i = 0; i < num_val; i++) {
  404. EC_POINT_free(val[i]);
  405. }
  406. OPENSSL_free(val);
  407. }
  408. OPENSSL_free(val_sub);
  409. return ret;
  410. }