internal.h 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413
  1. /* Copyright (C) 1995-1997 Eric Young (eay@cryptsoft.com)
  2. * All rights reserved.
  3. *
  4. * This package is an SSL implementation written
  5. * by Eric Young (eay@cryptsoft.com).
  6. * The implementation was written so as to conform with Netscapes SSL.
  7. *
  8. * This library is free for commercial and non-commercial use as long as
  9. * the following conditions are aheared to. The following conditions
  10. * apply to all code found in this distribution, be it the RC4, RSA,
  11. * lhash, DES, etc., code; not just the SSL code. The SSL documentation
  12. * included with this distribution is covered by the same copyright terms
  13. * except that the holder is Tim Hudson (tjh@cryptsoft.com).
  14. *
  15. * Copyright remains Eric Young's, and as such any Copyright notices in
  16. * the code are not to be removed.
  17. * If this package is used in a product, Eric Young should be given attribution
  18. * as the author of the parts of the library used.
  19. * This can be in the form of a textual message at program startup or
  20. * in documentation (online or textual) provided with the package.
  21. *
  22. * Redistribution and use in source and binary forms, with or without
  23. * modification, are permitted provided that the following conditions
  24. * are met:
  25. * 1. Redistributions of source code must retain the copyright
  26. * notice, this list of conditions and the following disclaimer.
  27. * 2. Redistributions in binary form must reproduce the above copyright
  28. * notice, this list of conditions and the following disclaimer in the
  29. * documentation and/or other materials provided with the distribution.
  30. * 3. All advertising materials mentioning features or use of this software
  31. * must display the following acknowledgement:
  32. * "This product includes cryptographic software written by
  33. * Eric Young (eay@cryptsoft.com)"
  34. * The word 'cryptographic' can be left out if the rouines from the library
  35. * being used are not cryptographic related :-).
  36. * 4. If you include any Windows specific code (or a derivative thereof) from
  37. * the apps directory (application code) you must include an acknowledgement:
  38. * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
  39. *
  40. * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
  41. * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  42. * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  43. * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
  44. * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  45. * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
  46. * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
  47. * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
  48. * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
  49. * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
  50. * SUCH DAMAGE.
  51. *
  52. * The licence and distribution terms for any publically available version or
  53. * derivative of this code cannot be changed. i.e. this code cannot simply be
  54. * copied and put under another distribution licence
  55. * [including the GNU Public Licence.]
  56. */
  57. /* ====================================================================
  58. * Copyright (c) 1998-2006 The OpenSSL Project. All rights reserved.
  59. *
  60. * Redistribution and use in source and binary forms, with or without
  61. * modification, are permitted provided that the following conditions
  62. * are met:
  63. *
  64. * 1. Redistributions of source code must retain the above copyright
  65. * notice, this list of conditions and the following disclaimer.
  66. *
  67. * 2. Redistributions in binary form must reproduce the above copyright
  68. * notice, this list of conditions and the following disclaimer in
  69. * the documentation and/or other materials provided with the
  70. * distribution.
  71. *
  72. * 3. All advertising materials mentioning features or use of this
  73. * software must display the following acknowledgment:
  74. * "This product includes software developed by the OpenSSL Project
  75. * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
  76. *
  77. * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
  78. * endorse or promote products derived from this software without
  79. * prior written permission. For written permission, please contact
  80. * openssl-core@openssl.org.
  81. *
  82. * 5. Products derived from this software may not be called "OpenSSL"
  83. * nor may "OpenSSL" appear in their names without prior written
  84. * permission of the OpenSSL Project.
  85. *
  86. * 6. Redistributions of any form whatsoever must retain the following
  87. * acknowledgment:
  88. * "This product includes software developed by the OpenSSL Project
  89. * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
  90. *
  91. * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
  92. * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  93. * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
  94. * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
  95. * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  96. * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
  97. * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
  98. * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
  99. * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
  100. * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
  101. * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
  102. * OF THE POSSIBILITY OF SUCH DAMAGE.
  103. * ====================================================================
  104. *
  105. * This product includes cryptographic software written by Eric Young
  106. * (eay@cryptsoft.com). This product includes software written by Tim
  107. * Hudson (tjh@cryptsoft.com).
  108. *
  109. */
  110. /* ====================================================================
  111. * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
  112. *
  113. * Portions of the attached software ("Contribution") are developed by
  114. * SUN MICROSYSTEMS, INC., and are contributed to the OpenSSL project.
  115. *
  116. * The Contribution is licensed pursuant to the Eric Young open source
  117. * license provided above.
  118. *
  119. * The binary polynomial arithmetic software is originally written by
  120. * Sheueling Chang Shantz and Douglas Stebila of Sun Microsystems
  121. * Laboratories. */
  122. #ifndef OPENSSL_HEADER_BN_INTERNAL_H
  123. #define OPENSSL_HEADER_BN_INTERNAL_H
  124. #include <openssl/base.h>
  125. #if defined(OPENSSL_X86_64) && defined(_MSC_VER)
  126. OPENSSL_MSVC_PRAGMA(warning(push, 3))
  127. #include <intrin.h>
  128. OPENSSL_MSVC_PRAGMA(warning(pop))
  129. #pragma intrinsic(__umulh, _umul128)
  130. #endif
  131. #include "../../internal.h"
  132. #if defined(__cplusplus)
  133. extern "C" {
  134. #endif
  135. #if defined(OPENSSL_64_BIT)
  136. #if !defined(_MSC_VER)
  137. // MSVC doesn't support two-word integers on 64-bit.
  138. #define BN_ULLONG uint128_t
  139. #endif
  140. #define BN_BITS2 64
  141. #define BN_BYTES 8
  142. #define BN_BITS4 32
  143. #define BN_MASK2 (0xffffffffffffffffUL)
  144. #define BN_MASK2l (0xffffffffUL)
  145. #define BN_MASK2h (0xffffffff00000000UL)
  146. #define BN_MASK2h1 (0xffffffff80000000UL)
  147. #define BN_MONT_CTX_N0_LIMBS 1
  148. #define BN_DEC_CONV (10000000000000000000UL)
  149. #define BN_DEC_NUM 19
  150. #define TOBN(hi, lo) ((BN_ULONG)(hi) << 32 | (lo))
  151. #elif defined(OPENSSL_32_BIT)
  152. #define BN_ULLONG uint64_t
  153. #define BN_BITS2 32
  154. #define BN_BYTES 4
  155. #define BN_BITS4 16
  156. #define BN_MASK2 (0xffffffffUL)
  157. #define BN_MASK2l (0xffffUL)
  158. #define BN_MASK2h1 (0xffff8000UL)
  159. #define BN_MASK2h (0xffff0000UL)
  160. // On some 32-bit platforms, Montgomery multiplication is done using 64-bit
  161. // arithmetic with SIMD instructions. On such platforms, |BN_MONT_CTX::n0|
  162. // needs to be two words long. Only certain 32-bit platforms actually make use
  163. // of n0[1] and shorter R value would suffice for the others. However,
  164. // currently only the assembly files know which is which.
  165. #define BN_MONT_CTX_N0_LIMBS 2
  166. #define BN_DEC_CONV (1000000000UL)
  167. #define BN_DEC_NUM 9
  168. #define TOBN(hi, lo) (lo), (hi)
  169. #else
  170. #error "Must define either OPENSSL_32_BIT or OPENSSL_64_BIT"
  171. #endif
  172. #define STATIC_BIGNUM(x) \
  173. { \
  174. (BN_ULONG *)(x), sizeof(x) / sizeof(BN_ULONG), \
  175. sizeof(x) / sizeof(BN_ULONG), 0, BN_FLG_STATIC_DATA \
  176. }
  177. #if defined(BN_ULLONG)
  178. #define Lw(t) ((BN_ULONG)(t))
  179. #define Hw(t) ((BN_ULONG)((t) >> BN_BITS2))
  180. #endif
  181. // bn_correct_top decrements |bn->top| until |bn->d[top-1]| is non-zero or
  182. // until |top| is zero. If |bn| is zero, |bn->neg| is set to zero.
  183. void bn_correct_top(BIGNUM *bn);
  184. // bn_wexpand ensures that |bn| has at least |words| works of space without
  185. // altering its value. It returns one on success or zero on allocation
  186. // failure.
  187. int bn_wexpand(BIGNUM *bn, size_t words);
  188. // bn_expand acts the same as |bn_wexpand|, but takes a number of bits rather
  189. // than a number of words.
  190. int bn_expand(BIGNUM *bn, size_t bits);
  191. // bn_set_words sets |bn| to the value encoded in the |num| words in |words|,
  192. // least significant word first.
  193. int bn_set_words(BIGNUM *bn, const BN_ULONG *words, size_t num);
  194. // bn_mul_add_words multiples |ap| by |w|, adds the result to |rp|, and places
  195. // the result in |rp|. |ap| and |rp| must both be |num| words long. It returns
  196. // the carry word of the operation. |ap| and |rp| may be equal but otherwise may
  197. // not alias.
  198. BN_ULONG bn_mul_add_words(BN_ULONG *rp, const BN_ULONG *ap, size_t num,
  199. BN_ULONG w);
  200. // bn_mul_words multiples |ap| by |w| and places the result in |rp|. |ap| and
  201. // |rp| must both be |num| words long. It returns the carry word of the
  202. // operation. |ap| and |rp| may be equal but otherwise may not alias.
  203. BN_ULONG bn_mul_words(BN_ULONG *rp, const BN_ULONG *ap, size_t num, BN_ULONG w);
  204. // bn_sqr_words sets |rp[2*i]| and |rp[2*i+1]| to |ap[i]|'s square, for all |i|
  205. // up to |num|. |ap| is an array of |num| words and |rp| an array of |2*num|
  206. // words. |ap| and |rp| may not alias.
  207. //
  208. // This gives the contribution of the |ap[i]*ap[i]| terms when squaring |ap|.
  209. void bn_sqr_words(BN_ULONG *rp, const BN_ULONG *ap, size_t num);
  210. // bn_add_words adds |ap| to |bp| and places the result in |rp|, each of which
  211. // are |num| words long. It returns the carry bit, which is one if the operation
  212. // overflowed and zero otherwise. Any pair of |ap|, |bp|, and |rp| may be equal
  213. // to each other but otherwise may not alias.
  214. BN_ULONG bn_add_words(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp,
  215. size_t num);
  216. // bn_sub_words subtracts |bp| from |ap| and places the result in |rp|. It
  217. // returns the borrow bit, which is one if the computation underflowed and zero
  218. // otherwise. Any pair of |ap|, |bp|, and |rp| may be equal to each other but
  219. // otherwise may not alias.
  220. BN_ULONG bn_sub_words(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp,
  221. size_t num);
  222. // bn_mul_comba4 sets |r| to the product of |a| and |b|.
  223. void bn_mul_comba4(BN_ULONG r[8], const BN_ULONG a[4], const BN_ULONG b[4]);
  224. // bn_mul_comba8 sets |r| to the product of |a| and |b|.
  225. void bn_mul_comba8(BN_ULONG r[16], const BN_ULONG a[8], const BN_ULONG b[8]);
  226. // bn_sqr_comba8 sets |r| to |a|^2.
  227. void bn_sqr_comba8(BN_ULONG r[16], const BN_ULONG a[4]);
  228. // bn_sqr_comba4 sets |r| to |a|^2.
  229. void bn_sqr_comba4(BN_ULONG r[8], const BN_ULONG a[4]);
  230. // bn_cmp_words returns a value less than, equal to or greater than zero if
  231. // the, length |n|, array |a| is less than, equal to or greater than |b|.
  232. int bn_cmp_words(const BN_ULONG *a, const BN_ULONG *b, int n);
  233. // bn_cmp_words returns a value less than, equal to or greater than zero if the
  234. // array |a| is less than, equal to or greater than |b|. The arrays can be of
  235. // different lengths: |cl| gives the minimum of the two lengths and |dl| gives
  236. // the length of |a| minus the length of |b|.
  237. int bn_cmp_part_words(const BN_ULONG *a, const BN_ULONG *b, int cl, int dl);
  238. // bn_less_than_words returns one if |a| < |b| and zero otherwise, where |a|
  239. // and |b| both are |len| words long. It runs in constant time.
  240. int bn_less_than_words(const BN_ULONG *a, const BN_ULONG *b, size_t len);
  241. // bn_in_range_words returns one if |min_inclusive| <= |a| < |max_exclusive|,
  242. // where |a| and |max_exclusive| both are |len| words long. This function leaks
  243. // which of [0, min_inclusive), [min_inclusive, max_exclusive), and
  244. // [max_exclusive, 2^(BN_BITS2*len)) contains |a|, but otherwise the value of
  245. // |a| is secret.
  246. int bn_in_range_words(const BN_ULONG *a, BN_ULONG min_inclusive,
  247. const BN_ULONG *max_exclusive, size_t len);
  248. // bn_rand_range_words sets |out| to a uniformly distributed random number from
  249. // |min_inclusive| to |max_exclusive|. Both |out| and |max_exclusive| are |len|
  250. // words long.
  251. //
  252. // This function runs in time independent of the result, but |min_inclusive| and
  253. // |max_exclusive| are public data. (Information about the range is unavoidably
  254. // leaked by how many iterations it took to select a number.)
  255. int bn_rand_range_words(BN_ULONG *out, BN_ULONG min_inclusive,
  256. const BN_ULONG *max_exclusive, size_t len,
  257. const uint8_t additional_data[32]);
  258. int bn_mul_mont(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp,
  259. const BN_ULONG *np, const BN_ULONG *n0, int num);
  260. uint64_t bn_mont_n0(const BIGNUM *n);
  261. int bn_mod_exp_base_2_vartime(BIGNUM *r, unsigned p, const BIGNUM *n);
  262. #if defined(OPENSSL_X86_64) && defined(_MSC_VER)
  263. #define BN_UMULT_LOHI(low, high, a, b) ((low) = _umul128((a), (b), &(high)))
  264. #endif
  265. #if !defined(BN_ULLONG) && !defined(BN_UMULT_LOHI)
  266. #error "Either BN_ULLONG or BN_UMULT_LOHI must be defined on every platform."
  267. #endif
  268. // bn_mod_inverse_prime sets |out| to the modular inverse of |a| modulo |p|,
  269. // computed with Fermat's Little Theorem. It returns one on success and zero on
  270. // error. If |mont_p| is NULL, one will be computed temporarily.
  271. int bn_mod_inverse_prime(BIGNUM *out, const BIGNUM *a, const BIGNUM *p,
  272. BN_CTX *ctx, const BN_MONT_CTX *mont_p);
  273. // bn_mod_inverse_secret_prime behaves like |bn_mod_inverse_prime| but uses
  274. // |BN_mod_exp_mont_consttime| instead of |BN_mod_exp_mont| in hopes of
  275. // protecting the exponent.
  276. int bn_mod_inverse_secret_prime(BIGNUM *out, const BIGNUM *a, const BIGNUM *p,
  277. BN_CTX *ctx, const BN_MONT_CTX *mont_p);
  278. // bn_jacobi returns the Jacobi symbol of |a| and |b| (which is -1, 0 or 1), or
  279. // -2 on error.
  280. int bn_jacobi(const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx);
  281. // bn_is_bit_set_words returns one if bit |bit| is set in |a| and zero
  282. // otherwise.
  283. int bn_is_bit_set_words(const BN_ULONG *a, size_t num, unsigned bit);
  284. // Low-level operations for small numbers.
  285. //
  286. // The following functions implement algorithms suitable for use with scalars
  287. // and field elements in elliptic curves. They rely on the number being small
  288. // both to stack-allocate various temporaries and because they do not implement
  289. // optimizations useful for the larger values used in RSA.
  290. // BN_SMALL_MAX_WORDS is the largest size input these functions handle. This
  291. // limit allows temporaries to be more easily stack-allocated. This limit is set
  292. // to accommodate P-521.
  293. #if defined(OPENSSL_32_BIT)
  294. #define BN_SMALL_MAX_WORDS 17
  295. #else
  296. #define BN_SMALL_MAX_WORDS 9
  297. #endif
  298. // bn_mul_small sets |r| to |a|*|b|. |num_r| must be |num_a| + |num_b|. |r| may
  299. // not alias with |a| or |b|. This function returns one on success and zero if
  300. // lengths are inconsistent.
  301. int bn_mul_small(BN_ULONG *r, size_t num_r, const BN_ULONG *a, size_t num_a,
  302. const BN_ULONG *b, size_t num_b);
  303. // bn_sqr_small sets |r| to |a|^2. |num_a| must be at most |BN_SMALL_MAX_WORDS|.
  304. // |num_r| must be |num_a|*2. |r| and |a| may not alias. This function returns
  305. // one on success and zero on programmer error.
  306. int bn_sqr_small(BN_ULONG *r, size_t num_r, const BN_ULONG *a, size_t num_a);
  307. // In the following functions, the modulus must be at most |BN_SMALL_MAX_WORDS|
  308. // words long.
  309. // bn_to_montgomery_small sets |r| to |a| translated to the Montgomery domain.
  310. // |num_a| and |num_r| must be the length of the modulus, which is
  311. // |mont->N.top|. |a| must be fully reduced. This function returns one on
  312. // success and zero if lengths are inconsistent. |r| and |a| may alias.
  313. int bn_to_montgomery_small(BN_ULONG *r, size_t num_r, const BN_ULONG *a,
  314. size_t num_a, const BN_MONT_CTX *mont);
  315. // bn_from_montgomery_small sets |r| to |a| translated out of the Montgomery
  316. // domain. |num_r| must be the length of the modulus, which is |mont->N.top|.
  317. // |a| must be at most |mont->N.top| * R and |num_a| must be at most 2 *
  318. // |mont->N.top|. This function returns one on success and zero if lengths are
  319. // inconsistent. |r| and |a| may alias.
  320. int bn_from_montgomery_small(BN_ULONG *r, size_t num_r, const BN_ULONG *a,
  321. size_t num_a, const BN_MONT_CTX *mont);
  322. // bn_mod_mul_montgomery_small sets |r| to |a| * |b| mod |mont->N|. Both inputs
  323. // and outputs are in the Montgomery domain. |num_r| must be the length of the
  324. // modulus, which is |mont->N.top|. This function returns one on success and
  325. // zero on internal error or inconsistent lengths. Any two of |r|, |a|, and |b|
  326. // may alias.
  327. //
  328. // This function requires |a| * |b| < N * R, where N is the modulus and R is the
  329. // Montgomery divisor, 2^(N.top * BN_BITS2). This should generally be satisfied
  330. // by ensuring |a| and |b| are fully reduced, however ECDSA has one computation
  331. // which requires the more general bound.
  332. int bn_mod_mul_montgomery_small(BN_ULONG *r, size_t num_r, const BN_ULONG *a,
  333. size_t num_a, const BN_ULONG *b, size_t num_b,
  334. const BN_MONT_CTX *mont);
  335. // bn_mod_exp_mont_small sets |r| to |a|^|p| mod |mont->N|. It returns one on
  336. // success and zero on programmer or internal error. Both inputs and outputs are
  337. // in the Montgomery domain. |num_r| and |num_a| must be |mont->N.top|, which
  338. // must be at most |BN_SMALL_MAX_WORDS|. |a| must be fully-reduced. This
  339. // function runs in time independent of |a|, but |p| and |mont->N| are public
  340. // values.
  341. //
  342. // Note this function differs from |BN_mod_exp_mont| which uses Montgomery
  343. // reduction but takes input and output outside the Montgomery domain. Combine
  344. // this function with |bn_from_montgomery_small| and |bn_to_montgomery_small|
  345. // if necessary.
  346. int bn_mod_exp_mont_small(BN_ULONG *r, size_t num_r, const BN_ULONG *a,
  347. size_t num_a, const BN_ULONG *p, size_t num_p,
  348. const BN_MONT_CTX *mont);
  349. // bn_mod_inverse_prime_mont_small sets |r| to |a|^-1 mod |mont->N|. |mont->N|
  350. // must be a prime. |num_r| and |num_a| must be |mont->N.top|, which must be at
  351. // most |BN_SMALL_MAX_WORDS|. |a| must be fully-reduced. This function runs in
  352. // time independent of |a|, but |mont->N| is a public value.
  353. int bn_mod_inverse_prime_mont_small(BN_ULONG *r, size_t num_r,
  354. const BN_ULONG *a, size_t num_a,
  355. const BN_MONT_CTX *mont);
  356. #if defined(__cplusplus)
  357. } // extern C
  358. #endif
  359. #endif // OPENSSL_HEADER_BN_INTERNAL_H