| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237 |
- /* Originally written by Bodo Moeller for the OpenSSL project.
- * ====================================================================
- * Copyright (c) 1998-2005 The OpenSSL Project. All rights reserved.
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions
- * are met:
- *
- * 1. Redistributions of source code must retain the above copyright
- * notice, this list of conditions and the following disclaimer.
- *
- * 2. Redistributions in binary form must reproduce the above copyright
- * notice, this list of conditions and the following disclaimer in
- * the documentation and/or other materials provided with the
- * distribution.
- *
- * 3. All advertising materials mentioning features or use of this
- * software must display the following acknowledgment:
- * "This product includes software developed by the OpenSSL Project
- * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
- *
- * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
- * endorse or promote products derived from this software without
- * prior written permission. For written permission, please contact
- * openssl-core@openssl.org.
- *
- * 5. Products derived from this software may not be called "OpenSSL"
- * nor may "OpenSSL" appear in their names without prior written
- * permission of the OpenSSL Project.
- *
- * 6. Redistributions of any form whatsoever must retain the following
- * acknowledgment:
- * "This product includes software developed by the OpenSSL Project
- * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
- *
- * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
- * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
- * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
- * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
- * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
- * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
- * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
- * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
- * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
- * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
- * OF THE POSSIBILITY OF SUCH DAMAGE.
- * ====================================================================
- *
- * This product includes cryptographic software written by Eric Young
- * (eay@cryptsoft.com). This product includes software written by Tim
- * Hudson (tjh@cryptsoft.com).
- *
- */
- /* ====================================================================
- * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
- *
- * Portions of the attached software ("Contribution") are developed by
- * SUN MICROSYSTEMS, INC., and are contributed to the OpenSSL project.
- *
- * The Contribution is licensed pursuant to the OpenSSL open source
- * license provided above.
- *
- * The elliptic curve binary polynomial software is originally written by
- * Sheueling Chang Shantz and Douglas Stebila of Sun Microsystems
- * Laboratories. */
- #include <openssl/ec.h>
- #include <string.h>
- #include <openssl/bn.h>
- #include <openssl/err.h>
- #include <openssl/mem.h>
- #include "internal.h"
- /* Most method functions in this file are designed to work with non-trivial
- * representations of field elements if necessary (see ecp_mont.c): while
- * standard modular addition and subtraction are used, the field_mul and
- * field_sqr methods will be used for multiplication, and field_encode and
- * field_decode (if defined) will be used for converting between
- * representations.
- * Functions ec_GFp_simple_points_make_affine() and
- * ec_GFp_simple_point_get_affine_coordinates() specifically assume that if a
- * non-trivial representation is used, it is a Montgomery representation (i.e.
- * 'encoding' means multiplying by some factor R). */
- int ec_GFp_simple_group_init(EC_GROUP *group) {
- BN_init(&group->field);
- BN_init(&group->a);
- BN_init(&group->b);
- group->a_is_minus3 = 0;
- return 1;
- }
- void ec_GFp_simple_group_finish(EC_GROUP *group) {
- BN_free(&group->field);
- BN_free(&group->a);
- BN_free(&group->b);
- }
- int ec_GFp_simple_group_copy(EC_GROUP *dest, const EC_GROUP *src) {
- if (!BN_copy(&dest->field, &src->field) ||
- !BN_copy(&dest->a, &src->a) ||
- !BN_copy(&dest->b, &src->b)) {
- return 0;
- }
- dest->a_is_minus3 = src->a_is_minus3;
- return 1;
- }
- int ec_GFp_simple_group_set_curve(EC_GROUP *group, const BIGNUM *p,
- const BIGNUM *a, const BIGNUM *b,
- BN_CTX *ctx) {
- int ret = 0;
- BN_CTX *new_ctx = NULL;
- BIGNUM *tmp_a;
- /* p must be a prime > 3 */
- if (BN_num_bits(p) <= 2 || !BN_is_odd(p)) {
- OPENSSL_PUT_ERROR(EC, EC_R_INVALID_FIELD);
- return 0;
- }
- if (ctx == NULL) {
- ctx = new_ctx = BN_CTX_new();
- if (ctx == NULL) {
- return 0;
- }
- }
- BN_CTX_start(ctx);
- tmp_a = BN_CTX_get(ctx);
- if (tmp_a == NULL) {
- goto err;
- }
- /* group->field */
- if (!BN_copy(&group->field, p)) {
- goto err;
- }
- BN_set_negative(&group->field, 0);
- /* group->a */
- if (!BN_nnmod(tmp_a, a, p, ctx)) {
- goto err;
- }
- if (group->meth->field_encode) {
- if (!group->meth->field_encode(group, &group->a, tmp_a, ctx)) {
- goto err;
- }
- } else if (!BN_copy(&group->a, tmp_a)) {
- goto err;
- }
- /* group->b */
- if (!BN_nnmod(&group->b, b, p, ctx)) {
- goto err;
- }
- if (group->meth->field_encode &&
- !group->meth->field_encode(group, &group->b, &group->b, ctx)) {
- goto err;
- }
- /* group->a_is_minus3 */
- if (!BN_add_word(tmp_a, 3)) {
- goto err;
- }
- group->a_is_minus3 = (0 == BN_cmp(tmp_a, &group->field));
- ret = 1;
- err:
- BN_CTX_end(ctx);
- BN_CTX_free(new_ctx);
- return ret;
- }
- int ec_GFp_simple_group_get_curve(const EC_GROUP *group, BIGNUM *p, BIGNUM *a,
- BIGNUM *b, BN_CTX *ctx) {
- int ret = 0;
- BN_CTX *new_ctx = NULL;
- if (p != NULL && !BN_copy(p, &group->field)) {
- return 0;
- }
- if (a != NULL || b != NULL) {
- if (group->meth->field_decode) {
- if (ctx == NULL) {
- ctx = new_ctx = BN_CTX_new();
- if (ctx == NULL) {
- return 0;
- }
- }
- if (a != NULL && !group->meth->field_decode(group, a, &group->a, ctx)) {
- goto err;
- }
- if (b != NULL && !group->meth->field_decode(group, b, &group->b, ctx)) {
- goto err;
- }
- } else {
- if (a != NULL && !BN_copy(a, &group->a)) {
- goto err;
- }
- if (b != NULL && !BN_copy(b, &group->b)) {
- goto err;
- }
- }
- }
- ret = 1;
- err:
- BN_CTX_free(new_ctx);
- return ret;
- }
- unsigned ec_GFp_simple_group_get_degree(const EC_GROUP *group) {
- return BN_num_bits(&group->field);
- }
- int ec_GFp_simple_point_init(EC_POINT *point) {
- BN_init(&point->X);
- BN_init(&point->Y);
- BN_init(&point->Z);
- point->Z_is_one = 0;
- return 1;
- }
- void ec_GFp_simple_point_finish(EC_POINT *point) {
- BN_free(&point->X);
- BN_free(&point->Y);
- BN_free(&point->Z);
- }
- void ec_GFp_simple_point_clear_finish(EC_POINT *point) {
- BN_clear_free(&point->X);
- BN_clear_free(&point->Y);
- BN_clear_free(&point->Z);
- point->Z_is_one = 0;
- }
- int ec_GFp_simple_point_copy(EC_POINT *dest, const EC_POINT *src) {
- if (!BN_copy(&dest->X, &src->X) ||
- !BN_copy(&dest->Y, &src->Y) ||
- !BN_copy(&dest->Z, &src->Z)) {
- return 0;
- }
- dest->Z_is_one = src->Z_is_one;
- return 1;
- }
- int ec_GFp_simple_point_set_to_infinity(const EC_GROUP *group,
- EC_POINT *point) {
- point->Z_is_one = 0;
- BN_zero(&point->Z);
- return 1;
- }
- int ec_GFp_simple_set_Jprojective_coordinates_GFp(
- const EC_GROUP *group, EC_POINT *point, const BIGNUM *x, const BIGNUM *y,
- const BIGNUM *z, BN_CTX *ctx) {
- BN_CTX *new_ctx = NULL;
- int ret = 0;
- if (ctx == NULL) {
- ctx = new_ctx = BN_CTX_new();
- if (ctx == NULL) {
- return 0;
- }
- }
- if (x != NULL) {
- if (!BN_nnmod(&point->X, x, &group->field, ctx)) {
- goto err;
- }
- if (group->meth->field_encode &&
- !group->meth->field_encode(group, &point->X, &point->X, ctx)) {
- goto err;
- }
- }
- if (y != NULL) {
- if (!BN_nnmod(&point->Y, y, &group->field, ctx)) {
- goto err;
- }
- if (group->meth->field_encode &&
- !group->meth->field_encode(group, &point->Y, &point->Y, ctx)) {
- goto err;
- }
- }
- if (z != NULL) {
- int Z_is_one;
- if (!BN_nnmod(&point->Z, z, &group->field, ctx)) {
- goto err;
- }
- Z_is_one = BN_is_one(&point->Z);
- if (group->meth->field_encode) {
- if (Z_is_one && (group->meth->field_set_to_one != 0)) {
- if (!group->meth->field_set_to_one(group, &point->Z, ctx)) {
- goto err;
- }
- } else if (!group->meth->field_encode(group, &point->Z, &point->Z, ctx)) {
- goto err;
- }
- }
- point->Z_is_one = Z_is_one;
- }
- ret = 1;
- err:
- BN_CTX_free(new_ctx);
- return ret;
- }
- int ec_GFp_simple_get_Jprojective_coordinates_GFp(const EC_GROUP *group,
- const EC_POINT *point,
- BIGNUM *x, BIGNUM *y,
- BIGNUM *z, BN_CTX *ctx) {
- BN_CTX *new_ctx = NULL;
- int ret = 0;
- if (group->meth->field_decode != 0) {
- if (ctx == NULL) {
- ctx = new_ctx = BN_CTX_new();
- if (ctx == NULL) {
- return 0;
- }
- }
- if (x != NULL && !group->meth->field_decode(group, x, &point->X, ctx)) {
- goto err;
- }
- if (y != NULL && !group->meth->field_decode(group, y, &point->Y, ctx)) {
- goto err;
- }
- if (z != NULL && !group->meth->field_decode(group, z, &point->Z, ctx)) {
- goto err;
- }
- } else {
- if (x != NULL && !BN_copy(x, &point->X)) {
- goto err;
- }
- if (y != NULL && !BN_copy(y, &point->Y)) {
- goto err;
- }
- if (z != NULL && !BN_copy(z, &point->Z)) {
- goto err;
- }
- }
- ret = 1;
- err:
- BN_CTX_free(new_ctx);
- return ret;
- }
- int ec_GFp_simple_point_set_affine_coordinates(const EC_GROUP *group,
- EC_POINT *point, const BIGNUM *x,
- const BIGNUM *y, BN_CTX *ctx) {
- if (x == NULL || y == NULL) {
- /* unlike for projective coordinates, we do not tolerate this */
- OPENSSL_PUT_ERROR(EC, ERR_R_PASSED_NULL_PARAMETER);
- return 0;
- }
- return ec_point_set_Jprojective_coordinates_GFp(group, point, x, y,
- BN_value_one(), ctx);
- }
- int ec_GFp_simple_point_get_affine_coordinates(const EC_GROUP *group,
- const EC_POINT *point, BIGNUM *x,
- BIGNUM *y, BN_CTX *ctx) {
- BN_CTX *new_ctx = NULL;
- BIGNUM *Z, *Z_1, *Z_2, *Z_3;
- const BIGNUM *Z_;
- int ret = 0;
- if (EC_POINT_is_at_infinity(group, point)) {
- OPENSSL_PUT_ERROR(EC, EC_R_POINT_AT_INFINITY);
- return 0;
- }
- if (ctx == NULL) {
- ctx = new_ctx = BN_CTX_new();
- if (ctx == NULL) {
- return 0;
- }
- }
- BN_CTX_start(ctx);
- Z = BN_CTX_get(ctx);
- Z_1 = BN_CTX_get(ctx);
- Z_2 = BN_CTX_get(ctx);
- Z_3 = BN_CTX_get(ctx);
- if (Z == NULL || Z_1 == NULL || Z_2 == NULL || Z_3 == NULL) {
- goto err;
- }
- /* transform (X, Y, Z) into (x, y) := (X/Z^2, Y/Z^3) */
- if (group->meth->field_decode) {
- if (!group->meth->field_decode(group, Z, &point->Z, ctx)) {
- goto err;
- }
- Z_ = Z;
- } else {
- Z_ = &point->Z;
- }
- if (BN_is_one(Z_)) {
- if (group->meth->field_decode) {
- if (x != NULL && !group->meth->field_decode(group, x, &point->X, ctx)) {
- goto err;
- }
- if (y != NULL && !group->meth->field_decode(group, y, &point->Y, ctx)) {
- goto err;
- }
- } else {
- if (x != NULL && !BN_copy(x, &point->X)) {
- goto err;
- }
- if (y != NULL && !BN_copy(y, &point->Y)) {
- goto err;
- }
- }
- } else {
- if (!BN_mod_inverse(Z_1, Z_, &group->field, ctx)) {
- OPENSSL_PUT_ERROR(EC, ERR_R_BN_LIB);
- goto err;
- }
- if (group->meth->field_encode == 0) {
- /* field_sqr works on standard representation */
- if (!group->meth->field_sqr(group, Z_2, Z_1, ctx)) {
- goto err;
- }
- } else if (!BN_mod_sqr(Z_2, Z_1, &group->field, ctx)) {
- goto err;
- }
- /* in the Montgomery case, field_mul will cancel out Montgomery factor in
- * X: */
- if (x != NULL && !group->meth->field_mul(group, x, &point->X, Z_2, ctx)) {
- goto err;
- }
- if (y != NULL) {
- if (group->meth->field_encode == 0) {
- /* field_mul works on standard representation */
- if (!group->meth->field_mul(group, Z_3, Z_2, Z_1, ctx)) {
- goto err;
- }
- } else if (!BN_mod_mul(Z_3, Z_2, Z_1, &group->field, ctx)) {
- goto err;
- }
- /* in the Montgomery case, field_mul will cancel out Montgomery factor in
- * Y: */
- if (!group->meth->field_mul(group, y, &point->Y, Z_3, ctx)) {
- goto err;
- }
- }
- }
- ret = 1;
- err:
- BN_CTX_end(ctx);
- BN_CTX_free(new_ctx);
- return ret;
- }
- int ec_GFp_simple_add(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a,
- const EC_POINT *b, BN_CTX *ctx) {
- int (*field_mul)(const EC_GROUP *, BIGNUM *, const BIGNUM *, const BIGNUM *,
- BN_CTX *);
- int (*field_sqr)(const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *);
- const BIGNUM *p;
- BN_CTX *new_ctx = NULL;
- BIGNUM *n0, *n1, *n2, *n3, *n4, *n5, *n6;
- int ret = 0;
- if (a == b) {
- return EC_POINT_dbl(group, r, a, ctx);
- }
- if (EC_POINT_is_at_infinity(group, a)) {
- return EC_POINT_copy(r, b);
- }
- if (EC_POINT_is_at_infinity(group, b)) {
- return EC_POINT_copy(r, a);
- }
- field_mul = group->meth->field_mul;
- field_sqr = group->meth->field_sqr;
- p = &group->field;
- if (ctx == NULL) {
- ctx = new_ctx = BN_CTX_new();
- if (ctx == NULL) {
- return 0;
- }
- }
- BN_CTX_start(ctx);
- n0 = BN_CTX_get(ctx);
- n1 = BN_CTX_get(ctx);
- n2 = BN_CTX_get(ctx);
- n3 = BN_CTX_get(ctx);
- n4 = BN_CTX_get(ctx);
- n5 = BN_CTX_get(ctx);
- n6 = BN_CTX_get(ctx);
- if (n6 == NULL) {
- goto end;
- }
- /* Note that in this function we must not read components of 'a' or 'b'
- * once we have written the corresponding components of 'r'.
- * ('r' might be one of 'a' or 'b'.)
- */
- /* n1, n2 */
- if (b->Z_is_one) {
- if (!BN_copy(n1, &a->X) || !BN_copy(n2, &a->Y)) {
- goto end;
- }
- /* n1 = X_a */
- /* n2 = Y_a */
- } else {
- if (!field_sqr(group, n0, &b->Z, ctx) ||
- !field_mul(group, n1, &a->X, n0, ctx)) {
- goto end;
- }
- /* n1 = X_a * Z_b^2 */
- if (!field_mul(group, n0, n0, &b->Z, ctx) ||
- !field_mul(group, n2, &a->Y, n0, ctx)) {
- goto end;
- }
- /* n2 = Y_a * Z_b^3 */
- }
- /* n3, n4 */
- if (a->Z_is_one) {
- if (!BN_copy(n3, &b->X) || !BN_copy(n4, &b->Y)) {
- goto end;
- }
- /* n3 = X_b */
- /* n4 = Y_b */
- } else {
- if (!field_sqr(group, n0, &a->Z, ctx) ||
- !field_mul(group, n3, &b->X, n0, ctx)) {
- goto end;
- }
- /* n3 = X_b * Z_a^2 */
- if (!field_mul(group, n0, n0, &a->Z, ctx) ||
- !field_mul(group, n4, &b->Y, n0, ctx)) {
- goto end;
- }
- /* n4 = Y_b * Z_a^3 */
- }
- /* n5, n6 */
- if (!BN_mod_sub_quick(n5, n1, n3, p) ||
- !BN_mod_sub_quick(n6, n2, n4, p)) {
- goto end;
- }
- /* n5 = n1 - n3 */
- /* n6 = n2 - n4 */
- if (BN_is_zero(n5)) {
- if (BN_is_zero(n6)) {
- /* a is the same point as b */
- BN_CTX_end(ctx);
- ret = EC_POINT_dbl(group, r, a, ctx);
- ctx = NULL;
- goto end;
- } else {
- /* a is the inverse of b */
- BN_zero(&r->Z);
- r->Z_is_one = 0;
- ret = 1;
- goto end;
- }
- }
- /* 'n7', 'n8' */
- if (!BN_mod_add_quick(n1, n1, n3, p) ||
- !BN_mod_add_quick(n2, n2, n4, p)) {
- goto end;
- }
- /* 'n7' = n1 + n3 */
- /* 'n8' = n2 + n4 */
- /* Z_r */
- if (a->Z_is_one && b->Z_is_one) {
- if (!BN_copy(&r->Z, n5)) {
- goto end;
- }
- } else {
- if (a->Z_is_one) {
- if (!BN_copy(n0, &b->Z)) {
- goto end;
- }
- } else if (b->Z_is_one) {
- if (!BN_copy(n0, &a->Z)) {
- goto end;
- }
- } else if (!field_mul(group, n0, &a->Z, &b->Z, ctx)) {
- goto end;
- }
- if (!field_mul(group, &r->Z, n0, n5, ctx)) {
- goto end;
- }
- }
- r->Z_is_one = 0;
- /* Z_r = Z_a * Z_b * n5 */
- /* X_r */
- if (!field_sqr(group, n0, n6, ctx) ||
- !field_sqr(group, n4, n5, ctx) ||
- !field_mul(group, n3, n1, n4, ctx) ||
- !BN_mod_sub_quick(&r->X, n0, n3, p)) {
- goto end;
- }
- /* X_r = n6^2 - n5^2 * 'n7' */
- /* 'n9' */
- if (!BN_mod_lshift1_quick(n0, &r->X, p) ||
- !BN_mod_sub_quick(n0, n3, n0, p)) {
- goto end;
- }
- /* n9 = n5^2 * 'n7' - 2 * X_r */
- /* Y_r */
- if (!field_mul(group, n0, n0, n6, ctx) ||
- !field_mul(group, n5, n4, n5, ctx)) {
- goto end; /* now n5 is n5^3 */
- }
- if (!field_mul(group, n1, n2, n5, ctx) ||
- !BN_mod_sub_quick(n0, n0, n1, p)) {
- goto end;
- }
- if (BN_is_odd(n0) && !BN_add(n0, n0, p)) {
- goto end;
- }
- /* now 0 <= n0 < 2*p, and n0 is even */
- if (!BN_rshift1(&r->Y, n0)) {
- goto end;
- }
- /* Y_r = (n6 * 'n9' - 'n8' * 'n5^3') / 2 */
- ret = 1;
- end:
- if (ctx) {
- /* otherwise we already called BN_CTX_end */
- BN_CTX_end(ctx);
- }
- BN_CTX_free(new_ctx);
- return ret;
- }
- int ec_GFp_simple_dbl(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a,
- BN_CTX *ctx) {
- int (*field_mul)(const EC_GROUP *, BIGNUM *, const BIGNUM *, const BIGNUM *,
- BN_CTX *);
- int (*field_sqr)(const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *);
- const BIGNUM *p;
- BN_CTX *new_ctx = NULL;
- BIGNUM *n0, *n1, *n2, *n3;
- int ret = 0;
- if (EC_POINT_is_at_infinity(group, a)) {
- BN_zero(&r->Z);
- r->Z_is_one = 0;
- return 1;
- }
- field_mul = group->meth->field_mul;
- field_sqr = group->meth->field_sqr;
- p = &group->field;
- if (ctx == NULL) {
- ctx = new_ctx = BN_CTX_new();
- if (ctx == NULL) {
- return 0;
- }
- }
- BN_CTX_start(ctx);
- n0 = BN_CTX_get(ctx);
- n1 = BN_CTX_get(ctx);
- n2 = BN_CTX_get(ctx);
- n3 = BN_CTX_get(ctx);
- if (n3 == NULL) {
- goto err;
- }
- /* Note that in this function we must not read components of 'a'
- * once we have written the corresponding components of 'r'.
- * ('r' might the same as 'a'.)
- */
- /* n1 */
- if (a->Z_is_one) {
- if (!field_sqr(group, n0, &a->X, ctx) ||
- !BN_mod_lshift1_quick(n1, n0, p) ||
- !BN_mod_add_quick(n0, n0, n1, p) ||
- !BN_mod_add_quick(n1, n0, &group->a, p)) {
- goto err;
- }
- /* n1 = 3 * X_a^2 + a_curve */
- } else if (group->a_is_minus3) {
- if (!field_sqr(group, n1, &a->Z, ctx) ||
- !BN_mod_add_quick(n0, &a->X, n1, p) ||
- !BN_mod_sub_quick(n2, &a->X, n1, p) ||
- !field_mul(group, n1, n0, n2, ctx) ||
- !BN_mod_lshift1_quick(n0, n1, p) ||
- !BN_mod_add_quick(n1, n0, n1, p)) {
- goto err;
- }
- /* n1 = 3 * (X_a + Z_a^2) * (X_a - Z_a^2)
- * = 3 * X_a^2 - 3 * Z_a^4 */
- } else {
- if (!field_sqr(group, n0, &a->X, ctx) ||
- !BN_mod_lshift1_quick(n1, n0, p) ||
- !BN_mod_add_quick(n0, n0, n1, p) ||
- !field_sqr(group, n1, &a->Z, ctx) ||
- !field_sqr(group, n1, n1, ctx) ||
- !field_mul(group, n1, n1, &group->a, ctx) ||
- !BN_mod_add_quick(n1, n1, n0, p)) {
- goto err;
- }
- /* n1 = 3 * X_a^2 + a_curve * Z_a^4 */
- }
- /* Z_r */
- if (a->Z_is_one) {
- if (!BN_copy(n0, &a->Y)) {
- goto err;
- }
- } else if (!field_mul(group, n0, &a->Y, &a->Z, ctx)) {
- goto err;
- }
- if (!BN_mod_lshift1_quick(&r->Z, n0, p)) {
- goto err;
- }
- r->Z_is_one = 0;
- /* Z_r = 2 * Y_a * Z_a */
- /* n2 */
- if (!field_sqr(group, n3, &a->Y, ctx) ||
- !field_mul(group, n2, &a->X, n3, ctx) ||
- !BN_mod_lshift_quick(n2, n2, 2, p)) {
- goto err;
- }
- /* n2 = 4 * X_a * Y_a^2 */
- /* X_r */
- if (!BN_mod_lshift1_quick(n0, n2, p) ||
- !field_sqr(group, &r->X, n1, ctx) ||
- !BN_mod_sub_quick(&r->X, &r->X, n0, p)) {
- goto err;
- }
- /* X_r = n1^2 - 2 * n2 */
- /* n3 */
- if (!field_sqr(group, n0, n3, ctx) ||
- !BN_mod_lshift_quick(n3, n0, 3, p)) {
- goto err;
- }
- /* n3 = 8 * Y_a^4 */
- /* Y_r */
- if (!BN_mod_sub_quick(n0, n2, &r->X, p) ||
- !field_mul(group, n0, n1, n0, ctx) ||
- !BN_mod_sub_quick(&r->Y, n0, n3, p)) {
- goto err;
- }
- /* Y_r = n1 * (n2 - X_r) - n3 */
- ret = 1;
- err:
- BN_CTX_end(ctx);
- BN_CTX_free(new_ctx);
- return ret;
- }
- int ec_GFp_simple_invert(const EC_GROUP *group, EC_POINT *point, BN_CTX *ctx) {
- if (EC_POINT_is_at_infinity(group, point) || BN_is_zero(&point->Y)) {
- /* point is its own inverse */
- return 1;
- }
- return BN_usub(&point->Y, &group->field, &point->Y);
- }
- int ec_GFp_simple_is_at_infinity(const EC_GROUP *group, const EC_POINT *point) {
- return !point->Z_is_one && BN_is_zero(&point->Z);
- }
- int ec_GFp_simple_is_on_curve(const EC_GROUP *group, const EC_POINT *point,
- BN_CTX *ctx) {
- int (*field_mul)(const EC_GROUP *, BIGNUM *, const BIGNUM *, const BIGNUM *,
- BN_CTX *);
- int (*field_sqr)(const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *);
- const BIGNUM *p;
- BN_CTX *new_ctx = NULL;
- BIGNUM *rh, *tmp, *Z4, *Z6;
- int ret = -1;
- if (EC_POINT_is_at_infinity(group, point)) {
- return 1;
- }
- field_mul = group->meth->field_mul;
- field_sqr = group->meth->field_sqr;
- p = &group->field;
- if (ctx == NULL) {
- ctx = new_ctx = BN_CTX_new();
- if (ctx == NULL) {
- return -1;
- }
- }
- BN_CTX_start(ctx);
- rh = BN_CTX_get(ctx);
- tmp = BN_CTX_get(ctx);
- Z4 = BN_CTX_get(ctx);
- Z6 = BN_CTX_get(ctx);
- if (Z6 == NULL) {
- goto err;
- }
- /* We have a curve defined by a Weierstrass equation
- * y^2 = x^3 + a*x + b.
- * The point to consider is given in Jacobian projective coordinates
- * where (X, Y, Z) represents (x, y) = (X/Z^2, Y/Z^3).
- * Substituting this and multiplying by Z^6 transforms the above equation
- * into
- * Y^2 = X^3 + a*X*Z^4 + b*Z^6.
- * To test this, we add up the right-hand side in 'rh'.
- */
- /* rh := X^2 */
- if (!field_sqr(group, rh, &point->X, ctx)) {
- goto err;
- }
- if (!point->Z_is_one) {
- if (!field_sqr(group, tmp, &point->Z, ctx) ||
- !field_sqr(group, Z4, tmp, ctx) ||
- !field_mul(group, Z6, Z4, tmp, ctx)) {
- goto err;
- }
- /* rh := (rh + a*Z^4)*X */
- if (group->a_is_minus3) {
- if (!BN_mod_lshift1_quick(tmp, Z4, p) ||
- !BN_mod_add_quick(tmp, tmp, Z4, p) ||
- !BN_mod_sub_quick(rh, rh, tmp, p) ||
- !field_mul(group, rh, rh, &point->X, ctx)) {
- goto err;
- }
- } else {
- if (!field_mul(group, tmp, Z4, &group->a, ctx) ||
- !BN_mod_add_quick(rh, rh, tmp, p) ||
- !field_mul(group, rh, rh, &point->X, ctx)) {
- goto err;
- }
- }
- /* rh := rh + b*Z^6 */
- if (!field_mul(group, tmp, &group->b, Z6, ctx) ||
- !BN_mod_add_quick(rh, rh, tmp, p)) {
- goto err;
- }
- } else {
- /* point->Z_is_one */
- /* rh := (rh + a)*X */
- if (!BN_mod_add_quick(rh, rh, &group->a, p) ||
- !field_mul(group, rh, rh, &point->X, ctx)) {
- goto err;
- }
- /* rh := rh + b */
- if (!BN_mod_add_quick(rh, rh, &group->b, p)) {
- goto err;
- }
- }
- /* 'lh' := Y^2 */
- if (!field_sqr(group, tmp, &point->Y, ctx)) {
- goto err;
- }
- ret = (0 == BN_ucmp(tmp, rh));
- err:
- BN_CTX_end(ctx);
- BN_CTX_free(new_ctx);
- return ret;
- }
- int ec_GFp_simple_cmp(const EC_GROUP *group, const EC_POINT *a,
- const EC_POINT *b, BN_CTX *ctx) {
- /* return values:
- * -1 error
- * 0 equal (in affine coordinates)
- * 1 not equal
- */
- int (*field_mul)(const EC_GROUP *, BIGNUM *, const BIGNUM *, const BIGNUM *,
- BN_CTX *);
- int (*field_sqr)(const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *);
- BN_CTX *new_ctx = NULL;
- BIGNUM *tmp1, *tmp2, *Za23, *Zb23;
- const BIGNUM *tmp1_, *tmp2_;
- int ret = -1;
- if (EC_POINT_is_at_infinity(group, a)) {
- return EC_POINT_is_at_infinity(group, b) ? 0 : 1;
- }
- if (EC_POINT_is_at_infinity(group, b)) {
- return 1;
- }
- if (a->Z_is_one && b->Z_is_one) {
- return ((BN_cmp(&a->X, &b->X) == 0) && BN_cmp(&a->Y, &b->Y) == 0) ? 0 : 1;
- }
- field_mul = group->meth->field_mul;
- field_sqr = group->meth->field_sqr;
- if (ctx == NULL) {
- ctx = new_ctx = BN_CTX_new();
- if (ctx == NULL) {
- return -1;
- }
- }
- BN_CTX_start(ctx);
- tmp1 = BN_CTX_get(ctx);
- tmp2 = BN_CTX_get(ctx);
- Za23 = BN_CTX_get(ctx);
- Zb23 = BN_CTX_get(ctx);
- if (Zb23 == NULL) {
- goto end;
- }
- /* We have to decide whether
- * (X_a/Z_a^2, Y_a/Z_a^3) = (X_b/Z_b^2, Y_b/Z_b^3),
- * or equivalently, whether
- * (X_a*Z_b^2, Y_a*Z_b^3) = (X_b*Z_a^2, Y_b*Z_a^3).
- */
- if (!b->Z_is_one) {
- if (!field_sqr(group, Zb23, &b->Z, ctx) ||
- !field_mul(group, tmp1, &a->X, Zb23, ctx)) {
- goto end;
- }
- tmp1_ = tmp1;
- } else {
- tmp1_ = &a->X;
- }
- if (!a->Z_is_one) {
- if (!field_sqr(group, Za23, &a->Z, ctx) ||
- !field_mul(group, tmp2, &b->X, Za23, ctx)) {
- goto end;
- }
- tmp2_ = tmp2;
- } else {
- tmp2_ = &b->X;
- }
- /* compare X_a*Z_b^2 with X_b*Z_a^2 */
- if (BN_cmp(tmp1_, tmp2_) != 0) {
- ret = 1; /* points differ */
- goto end;
- }
- if (!b->Z_is_one) {
- if (!field_mul(group, Zb23, Zb23, &b->Z, ctx) ||
- !field_mul(group, tmp1, &a->Y, Zb23, ctx)) {
- goto end;
- }
- /* tmp1_ = tmp1 */
- } else {
- tmp1_ = &a->Y;
- }
- if (!a->Z_is_one) {
- if (!field_mul(group, Za23, Za23, &a->Z, ctx) ||
- !field_mul(group, tmp2, &b->Y, Za23, ctx)) {
- goto end;
- }
- /* tmp2_ = tmp2 */
- } else {
- tmp2_ = &b->Y;
- }
- /* compare Y_a*Z_b^3 with Y_b*Z_a^3 */
- if (BN_cmp(tmp1_, tmp2_) != 0) {
- ret = 1; /* points differ */
- goto end;
- }
- /* points are equal */
- ret = 0;
- end:
- BN_CTX_end(ctx);
- BN_CTX_free(new_ctx);
- return ret;
- }
- int ec_GFp_simple_make_affine(const EC_GROUP *group, EC_POINT *point,
- BN_CTX *ctx) {
- BN_CTX *new_ctx = NULL;
- BIGNUM *x, *y;
- int ret = 0;
- if (point->Z_is_one || EC_POINT_is_at_infinity(group, point)) {
- return 1;
- }
- if (ctx == NULL) {
- ctx = new_ctx = BN_CTX_new();
- if (ctx == NULL) {
- return 0;
- }
- }
- BN_CTX_start(ctx);
- x = BN_CTX_get(ctx);
- y = BN_CTX_get(ctx);
- if (y == NULL) {
- goto err;
- }
- if (!EC_POINT_get_affine_coordinates_GFp(group, point, x, y, ctx) ||
- !EC_POINT_set_affine_coordinates_GFp(group, point, x, y, ctx)) {
- goto err;
- }
- if (!point->Z_is_one) {
- OPENSSL_PUT_ERROR(EC, ERR_R_INTERNAL_ERROR);
- goto err;
- }
- ret = 1;
- err:
- BN_CTX_end(ctx);
- BN_CTX_free(new_ctx);
- return ret;
- }
- int ec_GFp_simple_points_make_affine(const EC_GROUP *group, size_t num,
- EC_POINT *points[], BN_CTX *ctx) {
- BN_CTX *new_ctx = NULL;
- BIGNUM *tmp, *tmp_Z;
- BIGNUM **prod_Z = NULL;
- size_t i;
- int ret = 0;
- if (num == 0) {
- return 1;
- }
- if (ctx == NULL) {
- ctx = new_ctx = BN_CTX_new();
- if (ctx == NULL) {
- return 0;
- }
- }
- BN_CTX_start(ctx);
- tmp = BN_CTX_get(ctx);
- tmp_Z = BN_CTX_get(ctx);
- if (tmp == NULL || tmp_Z == NULL) {
- goto err;
- }
- prod_Z = OPENSSL_malloc(num * sizeof(prod_Z[0]));
- if (prod_Z == NULL) {
- goto err;
- }
- memset(prod_Z, 0, num * sizeof(prod_Z[0]));
- for (i = 0; i < num; i++) {
- prod_Z[i] = BN_new();
- if (prod_Z[i] == NULL) {
- goto err;
- }
- }
- /* Set each prod_Z[i] to the product of points[0]->Z .. points[i]->Z,
- * skipping any zero-valued inputs (pretend that they're 1). */
- if (!BN_is_zero(&points[0]->Z)) {
- if (!BN_copy(prod_Z[0], &points[0]->Z)) {
- goto err;
- }
- } else {
- if (group->meth->field_set_to_one != 0) {
- if (!group->meth->field_set_to_one(group, prod_Z[0], ctx)) {
- goto err;
- }
- } else {
- if (!BN_one(prod_Z[0])) {
- goto err;
- }
- }
- }
- for (i = 1; i < num; i++) {
- if (!BN_is_zero(&points[i]->Z)) {
- if (!group->meth->field_mul(group, prod_Z[i], prod_Z[i - 1],
- &points[i]->Z, ctx)) {
- goto err;
- }
- } else {
- if (!BN_copy(prod_Z[i], prod_Z[i - 1])) {
- goto err;
- }
- }
- }
- /* Now use a single explicit inversion to replace every
- * non-zero points[i]->Z by its inverse. */
- if (!BN_mod_inverse(tmp, prod_Z[num - 1], &group->field, ctx)) {
- OPENSSL_PUT_ERROR(EC, ERR_R_BN_LIB);
- goto err;
- }
- if (group->meth->field_encode != NULL) {
- /* In the Montgomery case, we just turned R*H (representing H)
- * into 1/(R*H), but we need R*(1/H) (representing 1/H);
- * i.e. we need to multiply by the Montgomery factor twice. */
- if (!group->meth->field_encode(group, tmp, tmp, ctx) ||
- !group->meth->field_encode(group, tmp, tmp, ctx)) {
- goto err;
- }
- }
- for (i = num - 1; i > 0; --i) {
- /* Loop invariant: tmp is the product of the inverses of
- * points[0]->Z .. points[i]->Z (zero-valued inputs skipped). */
- if (BN_is_zero(&points[i]->Z)) {
- continue;
- }
- /* Set tmp_Z to the inverse of points[i]->Z (as product
- * of Z inverses 0 .. i, Z values 0 .. i - 1). */
- if (!group->meth->field_mul(group, tmp_Z, prod_Z[i - 1], tmp, ctx) ||
- /* Update tmp to satisfy the loop invariant for i - 1. */
- !group->meth->field_mul(group, tmp, tmp, &points[i]->Z, ctx) ||
- /* Replace points[i]->Z by its inverse. */
- !BN_copy(&points[i]->Z, tmp_Z)) {
- goto err;
- }
- }
- /* Replace points[0]->Z by its inverse. */
- if (!BN_is_zero(&points[0]->Z) && !BN_copy(&points[0]->Z, tmp)) {
- goto err;
- }
- /* Finally, fix up the X and Y coordinates for all points. */
- for (i = 0; i < num; i++) {
- EC_POINT *p = points[i];
- if (!BN_is_zero(&p->Z)) {
- /* turn (X, Y, 1/Z) into (X/Z^2, Y/Z^3, 1). */
- if (!group->meth->field_sqr(group, tmp, &p->Z, ctx) ||
- !group->meth->field_mul(group, &p->X, &p->X, tmp, ctx) ||
- !group->meth->field_mul(group, tmp, tmp, &p->Z, ctx) ||
- !group->meth->field_mul(group, &p->Y, &p->Y, tmp, ctx)) {
- goto err;
- }
- if (group->meth->field_set_to_one != NULL) {
- if (!group->meth->field_set_to_one(group, &p->Z, ctx)) {
- goto err;
- }
- } else {
- if (!BN_one(&p->Z)) {
- goto err;
- }
- }
- p->Z_is_one = 1;
- }
- }
- ret = 1;
- err:
- BN_CTX_end(ctx);
- BN_CTX_free(new_ctx);
- if (prod_Z != NULL) {
- for (i = 0; i < num; i++) {
- if (prod_Z[i] == NULL) {
- break;
- }
- BN_clear_free(prod_Z[i]);
- }
- OPENSSL_free(prod_Z);
- }
- return ret;
- }
- int ec_GFp_simple_field_mul(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a,
- const BIGNUM *b, BN_CTX *ctx) {
- return BN_mod_mul(r, a, b, &group->field, ctx);
- }
- int ec_GFp_simple_field_sqr(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a,
- BN_CTX *ctx) {
- return BN_mod_sqr(r, a, &group->field, ctx);
- }
|