internal.h 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384
  1. /* ====================================================================
  2. * Copyright (c) 2008 The OpenSSL Project. All rights reserved.
  3. *
  4. * Redistribution and use in source and binary forms, with or without
  5. * modification, are permitted provided that the following conditions
  6. * are met:
  7. *
  8. * 1. Redistributions of source code must retain the above copyright
  9. * notice, this list of conditions and the following disclaimer.
  10. *
  11. * 2. Redistributions in binary form must reproduce the above copyright
  12. * notice, this list of conditions and the following disclaimer in
  13. * the documentation and/or other materials provided with the
  14. * distribution.
  15. *
  16. * 3. All advertising materials mentioning features or use of this
  17. * software must display the following acknowledgment:
  18. * "This product includes software developed by the OpenSSL Project
  19. * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
  20. *
  21. * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
  22. * endorse or promote products derived from this software without
  23. * prior written permission. For written permission, please contact
  24. * openssl-core@openssl.org.
  25. *
  26. * 5. Products derived from this software may not be called "OpenSSL"
  27. * nor may "OpenSSL" appear in their names without prior written
  28. * permission of the OpenSSL Project.
  29. *
  30. * 6. Redistributions of any form whatsoever must retain the following
  31. * acknowledgment:
  32. * "This product includes software developed by the OpenSSL Project
  33. * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
  34. *
  35. * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
  36. * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  37. * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
  38. * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
  39. * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  40. * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
  41. * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
  42. * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
  43. * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
  44. * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
  45. * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
  46. * OF THE POSSIBILITY OF SUCH DAMAGE.
  47. * ==================================================================== */
  48. #ifndef OPENSSL_HEADER_MODES_INTERNAL_H
  49. #define OPENSSL_HEADER_MODES_INTERNAL_H
  50. #include <openssl/base.h>
  51. #include <string.h>
  52. #include "../../internal.h"
  53. #if defined(__cplusplus)
  54. extern "C" {
  55. #endif
  56. #define STRICT_ALIGNMENT 1
  57. #if defined(OPENSSL_X86_64) || defined(OPENSSL_X86) || defined(OPENSSL_AARCH64)
  58. #undef STRICT_ALIGNMENT
  59. #define STRICT_ALIGNMENT 0
  60. #endif
  61. #if defined(__GNUC__) && __GNUC__ >= 2
  62. static inline uint32_t CRYPTO_bswap4(uint32_t x) {
  63. return __builtin_bswap32(x);
  64. }
  65. static inline uint64_t CRYPTO_bswap8(uint64_t x) {
  66. return __builtin_bswap64(x);
  67. }
  68. #elif defined(_MSC_VER)
  69. OPENSSL_MSVC_PRAGMA(warning(push, 3))
  70. #include <intrin.h>
  71. OPENSSL_MSVC_PRAGMA(warning(pop))
  72. #pragma intrinsic(_byteswap_uint64, _byteswap_ulong)
  73. static inline uint32_t CRYPTO_bswap4(uint32_t x) {
  74. return _byteswap_ulong(x);
  75. }
  76. static inline uint64_t CRYPTO_bswap8(uint64_t x) {
  77. return _byteswap_uint64(x);
  78. }
  79. #else
  80. static inline uint32_t CRYPTO_bswap4(uint32_t x) {
  81. x = (x >> 16) | (x << 16);
  82. x = ((x & 0xff00ff00) >> 8) | ((x & 0x00ff00ff) << 8);
  83. return x;
  84. }
  85. static inline uint64_t CRYPTO_bswap8(uint64_t x) {
  86. return CRYPTO_bswap4(x >> 32) | (((uint64_t)CRYPTO_bswap4(x)) << 32);
  87. }
  88. #endif
  89. static inline uint32_t GETU32(const void *in) {
  90. uint32_t v;
  91. OPENSSL_memcpy(&v, in, sizeof(v));
  92. return CRYPTO_bswap4(v);
  93. }
  94. static inline void PUTU32(void *out, uint32_t v) {
  95. v = CRYPTO_bswap4(v);
  96. OPENSSL_memcpy(out, &v, sizeof(v));
  97. }
  98. static inline size_t load_word_le(const void *in) {
  99. size_t v;
  100. OPENSSL_memcpy(&v, in, sizeof(v));
  101. return v;
  102. }
  103. static inline void store_word_le(void *out, size_t v) {
  104. OPENSSL_memcpy(out, &v, sizeof(v));
  105. }
  106. // block128_f is the type of a 128-bit, block cipher.
  107. typedef void (*block128_f)(const uint8_t in[16], uint8_t out[16],
  108. const void *key);
  109. // GCM definitions
  110. typedef struct { uint64_t hi,lo; } u128;
  111. // gmult_func multiplies |Xi| by the GCM key and writes the result back to
  112. // |Xi|.
  113. typedef void (*gmult_func)(uint64_t Xi[2], const u128 Htable[16]);
  114. // ghash_func repeatedly multiplies |Xi| by the GCM key and adds in blocks from
  115. // |inp|. The result is written back to |Xi| and the |len| argument must be a
  116. // multiple of 16.
  117. typedef void (*ghash_func)(uint64_t Xi[2], const u128 Htable[16],
  118. const uint8_t *inp, size_t len);
  119. // This differs from upstream's |gcm128_context| in that it does not have the
  120. // |key| pointer, in order to make it |memcpy|-friendly. Rather the key is
  121. // passed into each call that needs it.
  122. struct gcm128_context {
  123. // Following 6 names follow names in GCM specification
  124. union {
  125. uint64_t u[2];
  126. uint32_t d[4];
  127. uint8_t c[16];
  128. size_t t[16 / sizeof(size_t)];
  129. } Yi, EKi, EK0, len, Xi;
  130. // Note that the order of |Xi|, |H| and |Htable| is fixed by the MOVBE-based,
  131. // x86-64, GHASH assembly.
  132. u128 H;
  133. u128 Htable[16];
  134. gmult_func gmult;
  135. ghash_func ghash;
  136. unsigned int mres, ares;
  137. block128_f block;
  138. // use_aesni_gcm_crypt is true if this context should use the assembly
  139. // functions |aesni_gcm_encrypt| and |aesni_gcm_decrypt| to process data.
  140. unsigned use_aesni_gcm_crypt:1;
  141. };
  142. #if defined(OPENSSL_X86) || defined(OPENSSL_X86_64)
  143. // crypto_gcm_clmul_enabled returns one if the CLMUL implementation of GCM is
  144. // used.
  145. int crypto_gcm_clmul_enabled(void);
  146. #endif
  147. // CTR.
  148. // ctr128_f is the type of a function that performs CTR-mode encryption.
  149. typedef void (*ctr128_f)(const uint8_t *in, uint8_t *out, size_t blocks,
  150. const void *key, const uint8_t ivec[16]);
  151. // CRYPTO_ctr128_encrypt encrypts (or decrypts, it's the same in CTR mode)
  152. // |len| bytes from |in| to |out| using |block| in counter mode. There's no
  153. // requirement that |len| be a multiple of any value and any partial blocks are
  154. // stored in |ecount_buf| and |*num|, which must be zeroed before the initial
  155. // call. The counter is a 128-bit, big-endian value in |ivec| and is
  156. // incremented by this function.
  157. void CRYPTO_ctr128_encrypt(const uint8_t *in, uint8_t *out, size_t len,
  158. const void *key, uint8_t ivec[16],
  159. uint8_t ecount_buf[16], unsigned *num,
  160. block128_f block);
  161. // CRYPTO_ctr128_encrypt_ctr32 acts like |CRYPTO_ctr128_encrypt| but takes
  162. // |ctr|, a function that performs CTR mode but only deals with the lower 32
  163. // bits of the counter. This is useful when |ctr| can be an optimised
  164. // function.
  165. void CRYPTO_ctr128_encrypt_ctr32(const uint8_t *in, uint8_t *out, size_t len,
  166. const void *key, uint8_t ivec[16],
  167. uint8_t ecount_buf[16], unsigned *num,
  168. ctr128_f ctr);
  169. #if !defined(OPENSSL_NO_ASM) && \
  170. (defined(OPENSSL_X86) || defined(OPENSSL_X86_64))
  171. void aesni_ctr32_encrypt_blocks(const uint8_t *in, uint8_t *out, size_t blocks,
  172. const void *key, const uint8_t *ivec);
  173. #endif
  174. // GCM.
  175. //
  176. // This API differs from the upstream API slightly. The |GCM128_CONTEXT| does
  177. // not have a |key| pointer that points to the key as upstream's version does.
  178. // Instead, every function takes a |key| parameter. This way |GCM128_CONTEXT|
  179. // can be safely copied.
  180. typedef struct gcm128_context GCM128_CONTEXT;
  181. // CRYPTO_ghash_init writes a precomputed table of powers of |gcm_key| to
  182. // |out_table| and sets |*out_mult| and |*out_hash| to (potentially hardware
  183. // accelerated) functions for performing operations in the GHASH field. If the
  184. // AVX implementation was used |*out_is_avx| will be true.
  185. void CRYPTO_ghash_init(gmult_func *out_mult, ghash_func *out_hash,
  186. u128 *out_key, u128 out_table[16], int *out_is_avx,
  187. const uint8_t *gcm_key);
  188. // CRYPTO_gcm128_init initialises |ctx| to use |block| (typically AES) with
  189. // the given key. |is_aesni_encrypt| is one if |block| is |aesni_encrypt|.
  190. OPENSSL_EXPORT void CRYPTO_gcm128_init(GCM128_CONTEXT *ctx, const void *key,
  191. block128_f block, int is_aesni_encrypt);
  192. // CRYPTO_gcm128_setiv sets the IV (nonce) for |ctx|. The |key| must be the
  193. // same key that was passed to |CRYPTO_gcm128_init|.
  194. OPENSSL_EXPORT void CRYPTO_gcm128_setiv(GCM128_CONTEXT *ctx, const void *key,
  195. const uint8_t *iv, size_t iv_len);
  196. // CRYPTO_gcm128_aad sets the authenticated data for an instance of GCM.
  197. // This must be called before and data is encrypted. It returns one on success
  198. // and zero otherwise.
  199. OPENSSL_EXPORT int CRYPTO_gcm128_aad(GCM128_CONTEXT *ctx, const uint8_t *aad,
  200. size_t len);
  201. // CRYPTO_gcm128_encrypt encrypts |len| bytes from |in| to |out|. The |key|
  202. // must be the same key that was passed to |CRYPTO_gcm128_init|. It returns one
  203. // on success and zero otherwise.
  204. OPENSSL_EXPORT int CRYPTO_gcm128_encrypt(GCM128_CONTEXT *ctx, const void *key,
  205. const uint8_t *in, uint8_t *out,
  206. size_t len);
  207. // CRYPTO_gcm128_decrypt decrypts |len| bytes from |in| to |out|. The |key|
  208. // must be the same key that was passed to |CRYPTO_gcm128_init|. It returns one
  209. // on success and zero otherwise.
  210. OPENSSL_EXPORT int CRYPTO_gcm128_decrypt(GCM128_CONTEXT *ctx, const void *key,
  211. const uint8_t *in, uint8_t *out,
  212. size_t len);
  213. // CRYPTO_gcm128_encrypt_ctr32 encrypts |len| bytes from |in| to |out| using
  214. // a CTR function that only handles the bottom 32 bits of the nonce, like
  215. // |CRYPTO_ctr128_encrypt_ctr32|. The |key| must be the same key that was
  216. // passed to |CRYPTO_gcm128_init|. It returns one on success and zero
  217. // otherwise.
  218. OPENSSL_EXPORT int CRYPTO_gcm128_encrypt_ctr32(GCM128_CONTEXT *ctx,
  219. const void *key,
  220. const uint8_t *in, uint8_t *out,
  221. size_t len, ctr128_f stream);
  222. // CRYPTO_gcm128_decrypt_ctr32 decrypts |len| bytes from |in| to |out| using
  223. // a CTR function that only handles the bottom 32 bits of the nonce, like
  224. // |CRYPTO_ctr128_encrypt_ctr32|. The |key| must be the same key that was
  225. // passed to |CRYPTO_gcm128_init|. It returns one on success and zero
  226. // otherwise.
  227. OPENSSL_EXPORT int CRYPTO_gcm128_decrypt_ctr32(GCM128_CONTEXT *ctx,
  228. const void *key,
  229. const uint8_t *in, uint8_t *out,
  230. size_t len, ctr128_f stream);
  231. // CRYPTO_gcm128_finish calculates the authenticator and compares it against
  232. // |len| bytes of |tag|. It returns one on success and zero otherwise.
  233. OPENSSL_EXPORT int CRYPTO_gcm128_finish(GCM128_CONTEXT *ctx, const uint8_t *tag,
  234. size_t len);
  235. // CRYPTO_gcm128_tag calculates the authenticator and copies it into |tag|.
  236. // The minimum of |len| and 16 bytes are copied into |tag|.
  237. OPENSSL_EXPORT void CRYPTO_gcm128_tag(GCM128_CONTEXT *ctx, uint8_t *tag,
  238. size_t len);
  239. // CBC.
  240. // cbc128_f is the type of a function that performs CBC-mode encryption.
  241. typedef void (*cbc128_f)(const uint8_t *in, uint8_t *out, size_t len,
  242. const void *key, uint8_t ivec[16], int enc);
  243. // CRYPTO_cbc128_encrypt encrypts |len| bytes from |in| to |out| using the
  244. // given IV and block cipher in CBC mode. The input need not be a multiple of
  245. // 128 bits long, but the output will round up to the nearest 128 bit multiple,
  246. // zero padding the input if needed. The IV will be updated on return.
  247. void CRYPTO_cbc128_encrypt(const uint8_t *in, uint8_t *out, size_t len,
  248. const void *key, uint8_t ivec[16], block128_f block);
  249. // CRYPTO_cbc128_decrypt decrypts |len| bytes from |in| to |out| using the
  250. // given IV and block cipher in CBC mode. If |len| is not a multiple of 128
  251. // bits then only that many bytes will be written, but a multiple of 128 bits
  252. // is always read from |in|. The IV will be updated on return.
  253. void CRYPTO_cbc128_decrypt(const uint8_t *in, uint8_t *out, size_t len,
  254. const void *key, uint8_t ivec[16], block128_f block);
  255. // OFB.
  256. // CRYPTO_ofb128_encrypt encrypts (or decrypts, it's the same with OFB mode)
  257. // |len| bytes from |in| to |out| using |block| in OFB mode. There's no
  258. // requirement that |len| be a multiple of any value and any partial blocks are
  259. // stored in |ivec| and |*num|, the latter must be zero before the initial
  260. // call.
  261. void CRYPTO_ofb128_encrypt(const uint8_t *in, uint8_t *out,
  262. size_t len, const void *key, uint8_t ivec[16],
  263. unsigned *num, block128_f block);
  264. // CFB.
  265. // CRYPTO_cfb128_encrypt encrypts (or decrypts, if |enc| is zero) |len| bytes
  266. // from |in| to |out| using |block| in CFB mode. There's no requirement that
  267. // |len| be a multiple of any value and any partial blocks are stored in |ivec|
  268. // and |*num|, the latter must be zero before the initial call.
  269. void CRYPTO_cfb128_encrypt(const uint8_t *in, uint8_t *out, size_t len,
  270. const void *key, uint8_t ivec[16], unsigned *num,
  271. int enc, block128_f block);
  272. // CRYPTO_cfb128_8_encrypt encrypts (or decrypts, if |enc| is zero) |len| bytes
  273. // from |in| to |out| using |block| in CFB-8 mode. Prior to the first call
  274. // |num| should be set to zero.
  275. void CRYPTO_cfb128_8_encrypt(const uint8_t *in, uint8_t *out, size_t len,
  276. const void *key, uint8_t ivec[16], unsigned *num,
  277. int enc, block128_f block);
  278. // CRYPTO_cfb128_1_encrypt encrypts (or decrypts, if |enc| is zero) |len| bytes
  279. // from |in| to |out| using |block| in CFB-1 mode. Prior to the first call
  280. // |num| should be set to zero.
  281. void CRYPTO_cfb128_1_encrypt(const uint8_t *in, uint8_t *out, size_t bits,
  282. const void *key, uint8_t ivec[16], unsigned *num,
  283. int enc, block128_f block);
  284. size_t CRYPTO_cts128_encrypt_block(const uint8_t *in, uint8_t *out, size_t len,
  285. const void *key, uint8_t ivec[16],
  286. block128_f block);
  287. // POLYVAL.
  288. //
  289. // POLYVAL is a polynomial authenticator that operates over a field very
  290. // similar to the one that GHASH uses. See
  291. // https://tools.ietf.org/html/draft-irtf-cfrg-gcmsiv-02#section-3.
  292. typedef union {
  293. uint64_t u[2];
  294. uint8_t c[16];
  295. } polyval_block;
  296. struct polyval_ctx {
  297. // Note that the order of |S|, |H| and |Htable| is fixed by the MOVBE-based,
  298. // x86-64, GHASH assembly.
  299. polyval_block S;
  300. u128 H;
  301. u128 Htable[16];
  302. gmult_func gmult;
  303. ghash_func ghash;
  304. };
  305. // CRYPTO_POLYVAL_init initialises |ctx| using |key|.
  306. void CRYPTO_POLYVAL_init(struct polyval_ctx *ctx, const uint8_t key[16]);
  307. // CRYPTO_POLYVAL_update_blocks updates the accumulator in |ctx| given the
  308. // blocks from |in|. Only a whole number of blocks can be processed so |in_len|
  309. // must be a multiple of 16.
  310. void CRYPTO_POLYVAL_update_blocks(struct polyval_ctx *ctx, const uint8_t *in,
  311. size_t in_len);
  312. // CRYPTO_POLYVAL_finish writes the accumulator from |ctx| to |out|.
  313. void CRYPTO_POLYVAL_finish(const struct polyval_ctx *ctx, uint8_t out[16]);
  314. #if defined(__cplusplus)
  315. } // extern C
  316. #endif
  317. #endif // OPENSSL_HEADER_MODES_INTERNAL_H