| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146 |
- /* ====================================================================
- * Copyright (c) 1998-2000 The OpenSSL Project. All rights reserved.
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions
- * are met:
- *
- * 1. Redistributions of source code must retain the above copyright
- * notice, this list of conditions and the following disclaimer.
- *
- * 2. Redistributions in binary form must reproduce the above copyright
- * notice, this list of conditions and the following disclaimer in
- * the documentation and/or other materials provided with the
- * distribution.
- *
- * 3. All advertising materials mentioning features or use of this
- * software must display the following acknowledgment:
- * "This product includes software developed by the OpenSSL Project
- * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
- *
- * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
- * endorse or promote products derived from this software without
- * prior written permission. For written permission, please contact
- * openssl-core@openssl.org.
- *
- * 5. Products derived from this software may not be called "OpenSSL"
- * nor may "OpenSSL" appear in their names without prior written
- * permission of the OpenSSL Project.
- *
- * 6. Redistributions of any form whatsoever must retain the following
- * acknowledgment:
- * "This product includes software developed by the OpenSSL Project
- * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
- *
- * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
- * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
- * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
- * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
- * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
- * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
- * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
- * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
- * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
- * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
- * OF THE POSSIBILITY OF SUCH DAMAGE.
- * ====================================================================
- *
- * This product includes cryptographic software written by Eric Young
- * (eay@cryptsoft.com). This product includes software written by Tim
- * Hudson (tjh@cryptsoft.com). */
- #include <openssl/bn.h>
- #include <openssl/err.h>
- #include "internal.h"
- // least significant word
- #define BN_lsw(n) (((n)->top == 0) ? (BN_ULONG) 0 : (n)->d[0])
- int bn_jacobi(const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx) {
- // In 'tab', only odd-indexed entries are relevant:
- // For any odd BIGNUM n,
- // tab[BN_lsw(n) & 7]
- // is $(-1)^{(n^2-1)/8}$ (using TeX notation).
- // Note that the sign of n does not matter.
- static const int tab[8] = {0, 1, 0, -1, 0, -1, 0, 1};
- // The Jacobi symbol is only defined for odd modulus.
- if (!BN_is_odd(b)) {
- OPENSSL_PUT_ERROR(BN, BN_R_CALLED_WITH_EVEN_MODULUS);
- return -2;
- }
- // Require b be positive.
- if (BN_is_negative(b)) {
- OPENSSL_PUT_ERROR(BN, BN_R_NEGATIVE_NUMBER);
- return -2;
- }
- int ret = -2;
- BN_CTX_start(ctx);
- BIGNUM *A = BN_CTX_get(ctx);
- BIGNUM *B = BN_CTX_get(ctx);
- if (B == NULL) {
- goto end;
- }
- if (!BN_copy(A, a) ||
- !BN_copy(B, b)) {
- goto end;
- }
- // Adapted from logic to compute the Kronecker symbol, originally implemented
- // according to Henri Cohen, "A Course in Computational Algebraic Number
- // Theory" (algorithm 1.4.10).
- ret = 1;
- while (1) {
- // Cohen's step 3:
- // B is positive and odd
- if (BN_is_zero(A)) {
- ret = BN_is_one(B) ? ret : 0;
- goto end;
- }
- // now A is non-zero
- int i = 0;
- while (!BN_is_bit_set(A, i)) {
- i++;
- }
- if (!BN_rshift(A, A, i)) {
- ret = -2;
- goto end;
- }
- if (i & 1) {
- // i is odd
- // multiply 'ret' by $(-1)^{(B^2-1)/8}$
- ret = ret * tab[BN_lsw(B) & 7];
- }
- // Cohen's step 4:
- // multiply 'ret' by $(-1)^{(A-1)(B-1)/4}$
- if ((A->neg ? ~BN_lsw(A) : BN_lsw(A)) & BN_lsw(B) & 2) {
- ret = -ret;
- }
- // (A, B) := (B mod |A|, |A|)
- if (!BN_nnmod(B, B, A, ctx)) {
- ret = -2;
- goto end;
- }
- BIGNUM *tmp = A;
- A = B;
- B = tmp;
- tmp->neg = 0;
- }
- end:
- BN_CTX_end(ctx);
- return ret;
- }
|