| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218 |
- /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
- * All rights reserved.
- *
- * This package is an SSL implementation written
- * by Eric Young (eay@cryptsoft.com).
- * The implementation was written so as to conform with Netscapes SSL.
- *
- * This library is free for commercial and non-commercial use as long as
- * the following conditions are aheared to. The following conditions
- * apply to all code found in this distribution, be it the RC4, RSA,
- * lhash, DES, etc., code; not just the SSL code. The SSL documentation
- * included with this distribution is covered by the same copyright terms
- * except that the holder is Tim Hudson (tjh@cryptsoft.com).
- *
- * Copyright remains Eric Young's, and as such any Copyright notices in
- * the code are not to be removed.
- * If this package is used in a product, Eric Young should be given attribution
- * as the author of the parts of the library used.
- * This can be in the form of a textual message at program startup or
- * in documentation (online or textual) provided with the package.
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions
- * are met:
- * 1. Redistributions of source code must retain the copyright
- * notice, this list of conditions and the following disclaimer.
- * 2. Redistributions in binary form must reproduce the above copyright
- * notice, this list of conditions and the following disclaimer in the
- * documentation and/or other materials provided with the distribution.
- * 3. All advertising materials mentioning features or use of this software
- * must display the following acknowledgement:
- * "This product includes cryptographic software written by
- * Eric Young (eay@cryptsoft.com)"
- * The word 'cryptographic' can be left out if the rouines from the library
- * being used are not cryptographic related :-).
- * 4. If you include any Windows specific code (or a derivative thereof) from
- * the apps directory (application code) you must include an acknowledgement:
- * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
- *
- * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
- * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
- * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
- * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
- * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
- * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
- * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
- * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
- * SUCH DAMAGE.
- *
- * The licence and distribution terms for any publically available version or
- * derivative of this code cannot be changed. i.e. this code cannot simply be
- * copied and put under another distribution licence
- * [including the GNU Public Licence.] */
- #include <openssl/rsa.h>
- #include <assert.h>
- #include <limits.h>
- #include <string.h>
- #include <openssl/bn.h>
- #include <openssl/err.h>
- #include <openssl/mem.h>
- #include <openssl/thread.h>
- #include <openssl/type_check.h>
- #include "internal.h"
- #include "../bn/internal.h"
- #include "../../internal.h"
- #include "../delocate.h"
- static int check_modulus_and_exponent_sizes(const RSA *rsa) {
- unsigned rsa_bits = BN_num_bits(rsa->n);
- if (rsa_bits > 16 * 1024) {
- OPENSSL_PUT_ERROR(RSA, RSA_R_MODULUS_TOO_LARGE);
- return 0;
- }
- // Mitigate DoS attacks by limiting the exponent size. 33 bits was chosen as
- // the limit based on the recommendations in [1] and [2]. Windows CryptoAPI
- // doesn't support values larger than 32 bits [3], so it is unlikely that
- // exponents larger than 32 bits are being used for anything Windows commonly
- // does.
- //
- // [1] https://www.imperialviolet.org/2012/03/16/rsae.html
- // [2] https://www.imperialviolet.org/2012/03/17/rsados.html
- // [3] https://msdn.microsoft.com/en-us/library/aa387685(VS.85).aspx
- static const unsigned kMaxExponentBits = 33;
- if (BN_num_bits(rsa->e) > kMaxExponentBits) {
- OPENSSL_PUT_ERROR(RSA, RSA_R_BAD_E_VALUE);
- return 0;
- }
- // Verify |n > e|. Comparing |rsa_bits| to |kMaxExponentBits| is a small
- // shortcut to comparing |n| and |e| directly. In reality, |kMaxExponentBits|
- // is much smaller than the minimum RSA key size that any application should
- // accept.
- if (rsa_bits <= kMaxExponentBits) {
- OPENSSL_PUT_ERROR(RSA, RSA_R_KEY_SIZE_TOO_SMALL);
- return 0;
- }
- assert(BN_ucmp(rsa->n, rsa->e) > 0);
- return 1;
- }
- static int ensure_fixed_copy(BIGNUM **out, const BIGNUM *in, int width) {
- if (*out != NULL) {
- return 1;
- }
- BIGNUM *copy = BN_dup(in);
- if (copy == NULL ||
- !bn_resize_words(copy, width)) {
- BN_free(copy);
- return 0;
- }
- *out = copy;
- return 1;
- }
- // freeze_private_key finishes initializing |rsa|'s private key components.
- // After this function has returned, |rsa| may not be changed. This is needed
- // because |RSA| is a public struct and, additionally, OpenSSL 1.1.0 opaquified
- // it wrong (see https://github.com/openssl/openssl/issues/5158).
- static int freeze_private_key(RSA *rsa, BN_CTX *ctx) {
- CRYPTO_MUTEX_lock_read(&rsa->lock);
- int frozen = rsa->private_key_frozen;
- CRYPTO_MUTEX_unlock_read(&rsa->lock);
- if (frozen) {
- return 1;
- }
- int ret = 0;
- CRYPTO_MUTEX_lock_write(&rsa->lock);
- if (rsa->private_key_frozen) {
- ret = 1;
- goto err;
- }
- // Pre-compute various intermediate values, as well as copies of private
- // exponents with correct widths. Note that other threads may concurrently
- // read from |rsa->n|, |rsa->e|, etc., so any fixes must be in separate
- // copies. We use |mont_n->N|, |mont_p->N|, and |mont_q->N| as copies of |n|,
- // |p|, and |q| with the correct minimal widths.
- if (rsa->mont_n == NULL) {
- rsa->mont_n = BN_MONT_CTX_new_for_modulus(rsa->n, ctx);
- if (rsa->mont_n == NULL) {
- goto err;
- }
- }
- const BIGNUM *n_fixed = &rsa->mont_n->N;
- // The only public upper-bound of |rsa->d| is the bit length of |rsa->n|. The
- // ASN.1 serialization of RSA private keys unfortunately leaks the byte length
- // of |rsa->d|, but normalize it so we only leak it once, rather than per
- // operation.
- if (rsa->d != NULL &&
- !ensure_fixed_copy(&rsa->d_fixed, rsa->d, n_fixed->width)) {
- goto err;
- }
- if (rsa->p != NULL && rsa->q != NULL) {
- if (rsa->mont_p == NULL) {
- rsa->mont_p = BN_MONT_CTX_new_for_modulus(rsa->p, ctx);
- if (rsa->mont_p == NULL) {
- goto err;
- }
- }
- const BIGNUM *p_fixed = &rsa->mont_p->N;
- if (rsa->mont_q == NULL) {
- rsa->mont_q = BN_MONT_CTX_new_for_modulus(rsa->q, ctx);
- if (rsa->mont_q == NULL) {
- goto err;
- }
- }
- const BIGNUM *q_fixed = &rsa->mont_q->N;
- if (rsa->dmp1 != NULL && rsa->dmq1 != NULL) {
- // Key generation relies on this function to compute |iqmp|.
- if (rsa->iqmp == NULL) {
- BIGNUM *iqmp = BN_new();
- if (iqmp == NULL ||
- !bn_mod_inverse_secret_prime(iqmp, rsa->q, rsa->p, ctx,
- rsa->mont_p)) {
- BN_free(iqmp);
- goto err;
- }
- rsa->iqmp = iqmp;
- }
- // CRT components are only publicly bounded by their corresponding
- // moduli's bit lengths. |rsa->iqmp| is unused outside of this one-time
- // setup, so we do not compute a fixed-width version of it.
- if (!ensure_fixed_copy(&rsa->dmp1_fixed, rsa->dmp1, p_fixed->width) ||
- !ensure_fixed_copy(&rsa->dmq1_fixed, rsa->dmq1, q_fixed->width)) {
- goto err;
- }
- // Compute |inv_small_mod_large_mont|. Note that it is always modulo the
- // larger prime, independent of what is stored in |rsa->iqmp|.
- if (rsa->inv_small_mod_large_mont == NULL) {
- BIGNUM *inv_small_mod_large_mont = BN_new();
- int ok;
- if (BN_cmp(rsa->p, rsa->q) < 0) {
- ok = inv_small_mod_large_mont != NULL &&
- bn_mod_inverse_secret_prime(inv_small_mod_large_mont, rsa->p,
- rsa->q, ctx, rsa->mont_q) &&
- BN_to_montgomery(inv_small_mod_large_mont,
- inv_small_mod_large_mont, rsa->mont_q, ctx);
- } else {
- ok = inv_small_mod_large_mont != NULL &&
- BN_to_montgomery(inv_small_mod_large_mont, rsa->iqmp,
- rsa->mont_p, ctx);
- }
- if (!ok) {
- BN_free(inv_small_mod_large_mont);
- goto err;
- }
- rsa->inv_small_mod_large_mont = inv_small_mod_large_mont;
- }
- }
- }
- rsa->private_key_frozen = 1;
- ret = 1;
- err:
- CRYPTO_MUTEX_unlock_write(&rsa->lock);
- return ret;
- }
- size_t rsa_default_size(const RSA *rsa) {
- return BN_num_bytes(rsa->n);
- }
- int RSA_encrypt(RSA *rsa, size_t *out_len, uint8_t *out, size_t max_out,
- const uint8_t *in, size_t in_len, int padding) {
- if (rsa->n == NULL || rsa->e == NULL) {
- OPENSSL_PUT_ERROR(RSA, RSA_R_VALUE_MISSING);
- return 0;
- }
- const unsigned rsa_size = RSA_size(rsa);
- BIGNUM *f, *result;
- uint8_t *buf = NULL;
- BN_CTX *ctx = NULL;
- int i, ret = 0;
- if (max_out < rsa_size) {
- OPENSSL_PUT_ERROR(RSA, RSA_R_OUTPUT_BUFFER_TOO_SMALL);
- return 0;
- }
- if (!check_modulus_and_exponent_sizes(rsa)) {
- return 0;
- }
- ctx = BN_CTX_new();
- if (ctx == NULL) {
- goto err;
- }
- BN_CTX_start(ctx);
- f = BN_CTX_get(ctx);
- result = BN_CTX_get(ctx);
- buf = OPENSSL_malloc(rsa_size);
- if (!f || !result || !buf) {
- OPENSSL_PUT_ERROR(RSA, ERR_R_MALLOC_FAILURE);
- goto err;
- }
- switch (padding) {
- case RSA_PKCS1_PADDING:
- i = RSA_padding_add_PKCS1_type_2(buf, rsa_size, in, in_len);
- break;
- case RSA_PKCS1_OAEP_PADDING:
- // Use the default parameters: SHA-1 for both hashes and no label.
- i = RSA_padding_add_PKCS1_OAEP_mgf1(buf, rsa_size, in, in_len,
- NULL, 0, NULL, NULL);
- break;
- case RSA_NO_PADDING:
- i = RSA_padding_add_none(buf, rsa_size, in, in_len);
- break;
- default:
- OPENSSL_PUT_ERROR(RSA, RSA_R_UNKNOWN_PADDING_TYPE);
- goto err;
- }
- if (i <= 0) {
- goto err;
- }
- if (BN_bin2bn(buf, rsa_size, f) == NULL) {
- goto err;
- }
- if (BN_ucmp(f, rsa->n) >= 0) {
- // usually the padding functions would catch this
- OPENSSL_PUT_ERROR(RSA, RSA_R_DATA_TOO_LARGE);
- goto err;
- }
- if (!BN_MONT_CTX_set_locked(&rsa->mont_n, &rsa->lock, rsa->n, ctx) ||
- !BN_mod_exp_mont(result, f, rsa->e, &rsa->mont_n->N, ctx, rsa->mont_n)) {
- goto err;
- }
- // put in leading 0 bytes if the number is less than the length of the
- // modulus
- if (!BN_bn2bin_padded(out, rsa_size, result)) {
- OPENSSL_PUT_ERROR(RSA, ERR_R_INTERNAL_ERROR);
- goto err;
- }
- *out_len = rsa_size;
- ret = 1;
- err:
- if (ctx != NULL) {
- BN_CTX_end(ctx);
- BN_CTX_free(ctx);
- }
- OPENSSL_free(buf);
- return ret;
- }
- // MAX_BLINDINGS_PER_RSA defines the maximum number of cached BN_BLINDINGs per
- // RSA*. Then this limit is exceeded, BN_BLINDING objects will be created and
- // destroyed as needed.
- #define MAX_BLINDINGS_PER_RSA 1024
- // rsa_blinding_get returns a BN_BLINDING to use with |rsa|. It does this by
- // allocating one of the cached BN_BLINDING objects in |rsa->blindings|. If
- // none are free, the cache will be extended by a extra element and the new
- // BN_BLINDING is returned.
- //
- // On success, the index of the assigned BN_BLINDING is written to
- // |*index_used| and must be passed to |rsa_blinding_release| when finished.
- static BN_BLINDING *rsa_blinding_get(RSA *rsa, unsigned *index_used,
- BN_CTX *ctx) {
- assert(ctx != NULL);
- assert(rsa->mont_n != NULL);
- BN_BLINDING *ret = NULL;
- BN_BLINDING **new_blindings;
- uint8_t *new_blindings_inuse;
- char overflow = 0;
- CRYPTO_MUTEX_lock_write(&rsa->lock);
- unsigned i;
- for (i = 0; i < rsa->num_blindings; i++) {
- if (rsa->blindings_inuse[i] == 0) {
- rsa->blindings_inuse[i] = 1;
- ret = rsa->blindings[i];
- *index_used = i;
- break;
- }
- }
- if (ret != NULL) {
- CRYPTO_MUTEX_unlock_write(&rsa->lock);
- return ret;
- }
- overflow = rsa->num_blindings >= MAX_BLINDINGS_PER_RSA;
- // We didn't find a free BN_BLINDING to use so increase the length of
- // the arrays by one and use the newly created element.
- CRYPTO_MUTEX_unlock_write(&rsa->lock);
- ret = BN_BLINDING_new();
- if (ret == NULL) {
- return NULL;
- }
- if (overflow) {
- // We cannot add any more cached BN_BLINDINGs so we use |ret|
- // and mark it for destruction in |rsa_blinding_release|.
- *index_used = MAX_BLINDINGS_PER_RSA;
- return ret;
- }
- CRYPTO_MUTEX_lock_write(&rsa->lock);
- new_blindings =
- OPENSSL_malloc(sizeof(BN_BLINDING *) * (rsa->num_blindings + 1));
- if (new_blindings == NULL) {
- goto err1;
- }
- OPENSSL_memcpy(new_blindings, rsa->blindings,
- sizeof(BN_BLINDING *) * rsa->num_blindings);
- new_blindings[rsa->num_blindings] = ret;
- new_blindings_inuse = OPENSSL_malloc(rsa->num_blindings + 1);
- if (new_blindings_inuse == NULL) {
- goto err2;
- }
- OPENSSL_memcpy(new_blindings_inuse, rsa->blindings_inuse, rsa->num_blindings);
- new_blindings_inuse[rsa->num_blindings] = 1;
- *index_used = rsa->num_blindings;
- OPENSSL_free(rsa->blindings);
- rsa->blindings = new_blindings;
- OPENSSL_free(rsa->blindings_inuse);
- rsa->blindings_inuse = new_blindings_inuse;
- rsa->num_blindings++;
- CRYPTO_MUTEX_unlock_write(&rsa->lock);
- return ret;
- err2:
- OPENSSL_free(new_blindings);
- err1:
- CRYPTO_MUTEX_unlock_write(&rsa->lock);
- BN_BLINDING_free(ret);
- return NULL;
- }
- // rsa_blinding_release marks the cached BN_BLINDING at the given index as free
- // for other threads to use.
- static void rsa_blinding_release(RSA *rsa, BN_BLINDING *blinding,
- unsigned blinding_index) {
- if (blinding_index == MAX_BLINDINGS_PER_RSA) {
- // This blinding wasn't cached.
- BN_BLINDING_free(blinding);
- return;
- }
- CRYPTO_MUTEX_lock_write(&rsa->lock);
- rsa->blindings_inuse[blinding_index] = 0;
- CRYPTO_MUTEX_unlock_write(&rsa->lock);
- }
- // signing
- int rsa_default_sign_raw(RSA *rsa, size_t *out_len, uint8_t *out,
- size_t max_out, const uint8_t *in, size_t in_len,
- int padding) {
- const unsigned rsa_size = RSA_size(rsa);
- uint8_t *buf = NULL;
- int i, ret = 0;
- if (max_out < rsa_size) {
- OPENSSL_PUT_ERROR(RSA, RSA_R_OUTPUT_BUFFER_TOO_SMALL);
- return 0;
- }
- buf = OPENSSL_malloc(rsa_size);
- if (buf == NULL) {
- OPENSSL_PUT_ERROR(RSA, ERR_R_MALLOC_FAILURE);
- goto err;
- }
- switch (padding) {
- case RSA_PKCS1_PADDING:
- i = RSA_padding_add_PKCS1_type_1(buf, rsa_size, in, in_len);
- break;
- case RSA_NO_PADDING:
- i = RSA_padding_add_none(buf, rsa_size, in, in_len);
- break;
- default:
- OPENSSL_PUT_ERROR(RSA, RSA_R_UNKNOWN_PADDING_TYPE);
- goto err;
- }
- if (i <= 0) {
- goto err;
- }
- if (!RSA_private_transform(rsa, out, buf, rsa_size)) {
- goto err;
- }
- *out_len = rsa_size;
- ret = 1;
- err:
- OPENSSL_free(buf);
- return ret;
- }
- int rsa_default_decrypt(RSA *rsa, size_t *out_len, uint8_t *out, size_t max_out,
- const uint8_t *in, size_t in_len, int padding) {
- const unsigned rsa_size = RSA_size(rsa);
- uint8_t *buf = NULL;
- int ret = 0;
- if (max_out < rsa_size) {
- OPENSSL_PUT_ERROR(RSA, RSA_R_OUTPUT_BUFFER_TOO_SMALL);
- return 0;
- }
- if (padding == RSA_NO_PADDING) {
- buf = out;
- } else {
- // Allocate a temporary buffer to hold the padded plaintext.
- buf = OPENSSL_malloc(rsa_size);
- if (buf == NULL) {
- OPENSSL_PUT_ERROR(RSA, ERR_R_MALLOC_FAILURE);
- goto err;
- }
- }
- if (in_len != rsa_size) {
- OPENSSL_PUT_ERROR(RSA, RSA_R_DATA_LEN_NOT_EQUAL_TO_MOD_LEN);
- goto err;
- }
- if (!RSA_private_transform(rsa, buf, in, rsa_size)) {
- goto err;
- }
- switch (padding) {
- case RSA_PKCS1_PADDING:
- ret =
- RSA_padding_check_PKCS1_type_2(out, out_len, rsa_size, buf, rsa_size);
- break;
- case RSA_PKCS1_OAEP_PADDING:
- // Use the default parameters: SHA-1 for both hashes and no label.
- ret = RSA_padding_check_PKCS1_OAEP_mgf1(out, out_len, rsa_size, buf,
- rsa_size, NULL, 0, NULL, NULL);
- break;
- case RSA_NO_PADDING:
- *out_len = rsa_size;
- ret = 1;
- break;
- default:
- OPENSSL_PUT_ERROR(RSA, RSA_R_UNKNOWN_PADDING_TYPE);
- goto err;
- }
- if (!ret) {
- OPENSSL_PUT_ERROR(RSA, RSA_R_PADDING_CHECK_FAILED);
- }
- err:
- if (padding != RSA_NO_PADDING) {
- OPENSSL_free(buf);
- }
- return ret;
- }
- static int mod_exp(BIGNUM *r0, const BIGNUM *I, RSA *rsa, BN_CTX *ctx);
- int RSA_verify_raw(RSA *rsa, size_t *out_len, uint8_t *out, size_t max_out,
- const uint8_t *in, size_t in_len, int padding) {
- if (rsa->n == NULL || rsa->e == NULL) {
- OPENSSL_PUT_ERROR(RSA, RSA_R_VALUE_MISSING);
- return 0;
- }
- const unsigned rsa_size = RSA_size(rsa);
- BIGNUM *f, *result;
- if (max_out < rsa_size) {
- OPENSSL_PUT_ERROR(RSA, RSA_R_OUTPUT_BUFFER_TOO_SMALL);
- return 0;
- }
- if (in_len != rsa_size) {
- OPENSSL_PUT_ERROR(RSA, RSA_R_DATA_LEN_NOT_EQUAL_TO_MOD_LEN);
- return 0;
- }
- if (!check_modulus_and_exponent_sizes(rsa)) {
- return 0;
- }
- BN_CTX *ctx = BN_CTX_new();
- if (ctx == NULL) {
- return 0;
- }
- int ret = 0;
- uint8_t *buf = NULL;
- BN_CTX_start(ctx);
- f = BN_CTX_get(ctx);
- result = BN_CTX_get(ctx);
- if (f == NULL || result == NULL) {
- OPENSSL_PUT_ERROR(RSA, ERR_R_MALLOC_FAILURE);
- goto err;
- }
- if (padding == RSA_NO_PADDING) {
- buf = out;
- } else {
- // Allocate a temporary buffer to hold the padded plaintext.
- buf = OPENSSL_malloc(rsa_size);
- if (buf == NULL) {
- OPENSSL_PUT_ERROR(RSA, ERR_R_MALLOC_FAILURE);
- goto err;
- }
- }
- if (BN_bin2bn(in, in_len, f) == NULL) {
- goto err;
- }
- if (BN_ucmp(f, rsa->n) >= 0) {
- OPENSSL_PUT_ERROR(RSA, RSA_R_DATA_TOO_LARGE);
- goto err;
- }
- if (!BN_MONT_CTX_set_locked(&rsa->mont_n, &rsa->lock, rsa->n, ctx) ||
- !BN_mod_exp_mont(result, f, rsa->e, &rsa->mont_n->N, ctx, rsa->mont_n)) {
- goto err;
- }
- if (!BN_bn2bin_padded(buf, rsa_size, result)) {
- OPENSSL_PUT_ERROR(RSA, ERR_R_INTERNAL_ERROR);
- goto err;
- }
- switch (padding) {
- case RSA_PKCS1_PADDING:
- ret =
- RSA_padding_check_PKCS1_type_1(out, out_len, rsa_size, buf, rsa_size);
- break;
- case RSA_NO_PADDING:
- ret = 1;
- *out_len = rsa_size;
- break;
- default:
- OPENSSL_PUT_ERROR(RSA, RSA_R_UNKNOWN_PADDING_TYPE);
- goto err;
- }
- if (!ret) {
- OPENSSL_PUT_ERROR(RSA, RSA_R_PADDING_CHECK_FAILED);
- goto err;
- }
- err:
- BN_CTX_end(ctx);
- BN_CTX_free(ctx);
- if (buf != out) {
- OPENSSL_free(buf);
- }
- return ret;
- }
- int rsa_default_private_transform(RSA *rsa, uint8_t *out, const uint8_t *in,
- size_t len) {
- if (rsa->n == NULL || rsa->d == NULL) {
- OPENSSL_PUT_ERROR(RSA, RSA_R_VALUE_MISSING);
- return 0;
- }
- BIGNUM *f, *result;
- BN_CTX *ctx = NULL;
- unsigned blinding_index = 0;
- BN_BLINDING *blinding = NULL;
- int ret = 0;
- ctx = BN_CTX_new();
- if (ctx == NULL) {
- goto err;
- }
- BN_CTX_start(ctx);
- f = BN_CTX_get(ctx);
- result = BN_CTX_get(ctx);
- if (f == NULL || result == NULL) {
- OPENSSL_PUT_ERROR(RSA, ERR_R_MALLOC_FAILURE);
- goto err;
- }
- if (BN_bin2bn(in, len, f) == NULL) {
- goto err;
- }
- if (BN_ucmp(f, rsa->n) >= 0) {
- // Usually the padding functions would catch this.
- OPENSSL_PUT_ERROR(RSA, RSA_R_DATA_TOO_LARGE);
- goto err;
- }
- if (!freeze_private_key(rsa, ctx)) {
- OPENSSL_PUT_ERROR(RSA, ERR_R_INTERNAL_ERROR);
- goto err;
- }
- const int do_blinding = (rsa->flags & RSA_FLAG_NO_BLINDING) == 0;
- if (rsa->e == NULL && do_blinding) {
- // We cannot do blinding or verification without |e|, and continuing without
- // those countermeasures is dangerous. However, the Java/Android RSA API
- // requires support for keys where only |d| and |n| (and not |e|) are known.
- // The callers that require that bad behavior set |RSA_FLAG_NO_BLINDING|.
- OPENSSL_PUT_ERROR(RSA, RSA_R_NO_PUBLIC_EXPONENT);
- goto err;
- }
- if (do_blinding) {
- blinding = rsa_blinding_get(rsa, &blinding_index, ctx);
- if (blinding == NULL) {
- OPENSSL_PUT_ERROR(RSA, ERR_R_INTERNAL_ERROR);
- goto err;
- }
- if (!BN_BLINDING_convert(f, blinding, rsa->e, rsa->mont_n, ctx)) {
- goto err;
- }
- }
- if (rsa->p != NULL && rsa->q != NULL && rsa->e != NULL && rsa->dmp1 != NULL &&
- rsa->dmq1 != NULL && rsa->iqmp != NULL) {
- if (!mod_exp(result, f, rsa, ctx)) {
- goto err;
- }
- } else if (!BN_mod_exp_mont_consttime(result, f, rsa->d_fixed, rsa->n, ctx,
- rsa->mont_n)) {
- goto err;
- }
- // Verify the result to protect against fault attacks as described in the
- // 1997 paper "On the Importance of Checking Cryptographic Protocols for
- // Faults" by Dan Boneh, Richard A. DeMillo, and Richard J. Lipton. Some
- // implementations do this only when the CRT is used, but we do it in all
- // cases. Section 6 of the aforementioned paper describes an attack that
- // works when the CRT isn't used. That attack is much less likely to succeed
- // than the CRT attack, but there have likely been improvements since 1997.
- //
- // This check is cheap assuming |e| is small; it almost always is.
- if (rsa->e != NULL) {
- BIGNUM *vrfy = BN_CTX_get(ctx);
- if (vrfy == NULL ||
- !BN_mod_exp_mont(vrfy, result, rsa->e, rsa->n, ctx, rsa->mont_n) ||
- !BN_equal_consttime(vrfy, f)) {
- OPENSSL_PUT_ERROR(RSA, ERR_R_INTERNAL_ERROR);
- goto err;
- }
- }
- if (do_blinding &&
- !BN_BLINDING_invert(result, blinding, rsa->mont_n, ctx)) {
- goto err;
- }
- // The computation should have left |result| as a maximally-wide number, so
- // that it and serializing does not leak information about the magnitude of
- // the result.
- //
- // See Falko Stenzke, "Manger's Attack revisited", ICICS 2010.
- assert(result->width == rsa->mont_n->N.width);
- if (!BN_bn2bin_padded(out, len, result)) {
- OPENSSL_PUT_ERROR(RSA, ERR_R_INTERNAL_ERROR);
- goto err;
- }
- ret = 1;
- err:
- if (ctx != NULL) {
- BN_CTX_end(ctx);
- BN_CTX_free(ctx);
- }
- if (blinding != NULL) {
- rsa_blinding_release(rsa, blinding, blinding_index);
- }
- return ret;
- }
- // mod_montgomery sets |r| to |I| mod |p|. |I| must already be fully reduced
- // modulo |p| times |q|. It returns one on success and zero on error.
- static int mod_montgomery(BIGNUM *r, const BIGNUM *I, const BIGNUM *p,
- const BN_MONT_CTX *mont_p, const BIGNUM *q,
- BN_CTX *ctx) {
- // Reducing in constant-time with Montgomery reduction requires I <= p * R. We
- // have I < p * q, so this follows if q < R. In particular, this always holds
- // if p and q are the same size, which is true for any RSA keys we or anyone
- // sane generates. For other keys, we fall back to |BN_mod|.
- if (!bn_less_than_montgomery_R(q, mont_p)) {
- return BN_mod(r, I, p, ctx);
- }
- if (// Reduce mod p with Montgomery reduction. This computes I * R^-1 mod p.
- !BN_from_montgomery(r, I, mont_p, ctx) ||
- // Multiply by R^2 and do another Montgomery reduction to compute
- // I * R^-1 * R^2 * R^-1 = I mod p.
- !BN_to_montgomery(r, r, mont_p, ctx)) {
- return 0;
- }
- // By precomputing R^3 mod p (normally |BN_MONT_CTX| only uses R^2 mod p) and
- // adjusting the API for |BN_mod_exp_mont_consttime|, we could instead compute
- // I * R mod p here and save a reduction per prime. But this would require
- // changing the RSAZ code and may not be worth it. Note that the RSAZ code
- // uses a different radix, so it uses R' = 2^1044. There we'd actually want
- // R^2 * R', and would futher benefit from a precomputed R'^2. It currently
- // converts |mont_p->RR| to R'^2.
- return 1;
- }
- static int mod_exp(BIGNUM *r0, const BIGNUM *I, RSA *rsa, BN_CTX *ctx) {
- assert(ctx != NULL);
- assert(rsa->n != NULL);
- assert(rsa->e != NULL);
- assert(rsa->d != NULL);
- assert(rsa->p != NULL);
- assert(rsa->q != NULL);
- assert(rsa->dmp1 != NULL);
- assert(rsa->dmq1 != NULL);
- assert(rsa->iqmp != NULL);
- BIGNUM *r1, *m1;
- int ret = 0;
- BN_CTX_start(ctx);
- r1 = BN_CTX_get(ctx);
- m1 = BN_CTX_get(ctx);
- if (r1 == NULL ||
- m1 == NULL) {
- goto err;
- }
- if (!freeze_private_key(rsa, ctx)) {
- goto err;
- }
- // Implementing RSA with CRT in constant-time is sensitive to which prime is
- // larger. Canonicalize fields so that |p| is the larger prime.
- const BIGNUM *dmp1 = rsa->dmp1_fixed, *dmq1 = rsa->dmq1_fixed;
- const BN_MONT_CTX *mont_p = rsa->mont_p, *mont_q = rsa->mont_q;
- if (BN_cmp(rsa->p, rsa->q) < 0) {
- mont_p = rsa->mont_q;
- mont_q = rsa->mont_p;
- dmp1 = rsa->dmq1_fixed;
- dmq1 = rsa->dmp1_fixed;
- }
- // Use the minimal-width versions of |n|, |p|, and |q|. Either works, but if
- // someone gives us non-minimal values, these will be slightly more efficient
- // on the non-Montgomery operations.
- const BIGNUM *n = &rsa->mont_n->N;
- const BIGNUM *p = &mont_p->N;
- const BIGNUM *q = &mont_q->N;
- // This is a pre-condition for |mod_montgomery|. It was already checked by the
- // caller.
- assert(BN_ucmp(I, n) < 0);
- if (// |m1| is the result modulo |q|.
- !mod_montgomery(r1, I, q, mont_q, p, ctx) ||
- !BN_mod_exp_mont_consttime(m1, r1, dmq1, q, ctx, mont_q) ||
- // |r0| is the result modulo |p|.
- !mod_montgomery(r1, I, p, mont_p, q, ctx) ||
- !BN_mod_exp_mont_consttime(r0, r1, dmp1, p, ctx, mont_p) ||
- // Compute r0 = r0 - m1 mod p. |p| is the larger prime, so |m1| is already
- // fully reduced mod |p|.
- !bn_mod_sub_consttime(r0, r0, m1, p, ctx) ||
- // r0 = r0 * iqmp mod p. We use Montgomery multiplication to compute this
- // in constant time. |inv_small_mod_large_mont| is in Montgomery form and
- // r0 is not, so the result is taken out of Montgomery form.
- !BN_mod_mul_montgomery(r0, r0, rsa->inv_small_mod_large_mont, mont_p,
- ctx) ||
- // r0 = r0 * q + m1 gives the final result. Reducing modulo q gives m1, so
- // it is correct mod p. Reducing modulo p gives (r0-m1)*iqmp*q + m1 = r0,
- // so it is correct mod q. Finally, the result is bounded by [m1, n + m1),
- // and the result is at least |m1|, so this must be the unique answer in
- // [0, n).
- !bn_mul_consttime(r0, r0, q, ctx) ||
- !bn_uadd_consttime(r0, r0, m1) ||
- // The result should be bounded by |n|, but fixed-width operations may
- // bound the width slightly higher, so fix it.
- !bn_resize_words(r0, n->width)) {
- goto err;
- }
- ret = 1;
- err:
- BN_CTX_end(ctx);
- return ret;
- }
- static int ensure_bignum(BIGNUM **out) {
- if (*out == NULL) {
- *out = BN_new();
- }
- return *out != NULL;
- }
- // kBoringSSLRSASqrtTwo is the BIGNUM representation of ⌊2¹⁵³⁵×√2⌋. This is
- // chosen to give enough precision for 3072-bit RSA, the largest key size FIPS
- // specifies. Key sizes beyond this will round up.
- //
- // To verify this number, check that n² < 2³⁰⁷¹ < (n+1)², where n is value
- // represented here. Note the components are listed in little-endian order. Here
- // is some sample Python code to check:
- //
- // >>> TOBN = lambda a, b: a << 32 | b
- // >>> l = [ <paste the contents of kSqrtTwo> ]
- // >>> n = sum(a * 2**(64*i) for i, a in enumerate(l))
- // >>> n**2 < 2**3071 < (n+1)**2
- // True
- const BN_ULONG kBoringSSLRSASqrtTwo[] = {
- TOBN(0xdea06241, 0xf7aa81c2), TOBN(0xf6a1be3f, 0xca221307),
- TOBN(0x332a5e9f, 0x7bda1ebf), TOBN(0x0104dc01, 0xfe32352f),
- TOBN(0xb8cf341b, 0x6f8236c7), TOBN(0x4264dabc, 0xd528b651),
- TOBN(0xf4d3a02c, 0xebc93e0c), TOBN(0x81394ab6, 0xd8fd0efd),
- TOBN(0xeaa4a089, 0x9040ca4a), TOBN(0xf52f120f, 0x836e582e),
- TOBN(0xcb2a6343, 0x31f3c84d), TOBN(0xc6d5a8a3, 0x8bb7e9dc),
- TOBN(0x460abc72, 0x2f7c4e33), TOBN(0xcab1bc91, 0x1688458a),
- TOBN(0x53059c60, 0x11bc337b), TOBN(0xd2202e87, 0x42af1f4e),
- TOBN(0x78048736, 0x3dfa2768), TOBN(0x0f74a85e, 0x439c7b4a),
- TOBN(0xa8b1fe6f, 0xdc83db39), TOBN(0x4afc8304, 0x3ab8a2c3),
- TOBN(0xed17ac85, 0x83339915), TOBN(0x1d6f60ba, 0x893ba84c),
- TOBN(0x597d89b3, 0x754abe9f), TOBN(0xb504f333, 0xf9de6484),
- };
- const size_t kBoringSSLRSASqrtTwoLen = OPENSSL_ARRAY_SIZE(kBoringSSLRSASqrtTwo);
- // generate_prime sets |out| to a prime with length |bits| such that |out|-1 is
- // relatively prime to |e|. If |p| is non-NULL, |out| will also not be close to
- // |p|. |sqrt2| must be ⌊2^(bits-1)×√2⌋ (or a slightly overestimate for large
- // sizes), and |pow2_bits_100| must be 2^(bits-100).
- static int generate_prime(BIGNUM *out, int bits, const BIGNUM *e,
- const BIGNUM *p, const BIGNUM *sqrt2,
- const BIGNUM *pow2_bits_100, BN_CTX *ctx,
- BN_GENCB *cb) {
- if (bits < 128 || (bits % BN_BITS2) != 0) {
- OPENSSL_PUT_ERROR(RSA, ERR_R_INTERNAL_ERROR);
- return 0;
- }
- assert(BN_is_pow2(pow2_bits_100));
- assert(BN_is_bit_set(pow2_bits_100, bits - 100));
- // See FIPS 186-4 appendix B.3.3, steps 4 and 5. Note |bits| here is nlen/2.
- // Use the limit from steps 4.7 and 5.8 for most values of |e|. When |e| is 3,
- // the 186-4 limit is too low, so we use a higher one. Note this case is not
- // reachable from |RSA_generate_key_fips|.
- if (bits >= INT_MAX/32) {
- OPENSSL_PUT_ERROR(RSA, RSA_R_MODULUS_TOO_LARGE);
- return 0;
- }
- int limit = BN_is_word(e, 3) ? bits * 32 : bits * 5;
- int ret = 0, tries = 0, rand_tries = 0;
- BN_CTX_start(ctx);
- BIGNUM *tmp = BN_CTX_get(ctx);
- if (tmp == NULL) {
- goto err;
- }
- for (;;) {
- // Generate a random number of length |bits| where the bottom bit is set
- // (steps 4.2, 4.3, 5.2 and 5.3) and the top bit is set (implied by the
- // bound checked below in steps 4.4 and 5.5).
- if (!BN_rand(out, bits, BN_RAND_TOP_ONE, BN_RAND_BOTTOM_ODD) ||
- !BN_GENCB_call(cb, BN_GENCB_GENERATED, rand_tries++)) {
- goto err;
- }
- if (p != NULL) {
- // If |p| and |out| are too close, try again (step 5.4).
- if (!bn_abs_sub_consttime(tmp, out, p, ctx)) {
- goto err;
- }
- if (BN_cmp(tmp, pow2_bits_100) <= 0) {
- continue;
- }
- }
- // If out < 2^(bits-1)×√2, try again (steps 4.4 and 5.5). This is equivalent
- // to out <= ⌊2^(bits-1)×√2⌋, or out <= sqrt2 for FIPS key sizes.
- //
- // For larger keys, the comparison is approximate, leaning towards
- // retrying. That is, we reject a negligible fraction of primes that are
- // within the FIPS bound, but we will never accept a prime outside the
- // bound, ensuring the resulting RSA key is the right size.
- if (BN_cmp(out, sqrt2) <= 0) {
- continue;
- }
- // RSA key generation's bottleneck is discarding composites. If it fails
- // trial division, do not bother computing a GCD or performing Rabin-Miller.
- if (!bn_odd_number_is_obviously_composite(out)) {
- // Check gcd(out-1, e) is one (steps 4.5 and 5.6).
- int relatively_prime;
- if (!BN_sub(tmp, out, BN_value_one()) ||
- !bn_is_relatively_prime(&relatively_prime, tmp, e, ctx)) {
- goto err;
- }
- if (relatively_prime) {
- // Test |out| for primality (steps 4.5.1 and 5.6.1).
- int is_probable_prime;
- if (!BN_primality_test(&is_probable_prime, out, BN_prime_checks, ctx, 0,
- cb)) {
- goto err;
- }
- if (is_probable_prime) {
- ret = 1;
- goto err;
- }
- }
- }
- // If we've tried too many times to find a prime, abort (steps 4.7 and
- // 5.8).
- tries++;
- if (tries >= limit) {
- OPENSSL_PUT_ERROR(RSA, RSA_R_TOO_MANY_ITERATIONS);
- goto err;
- }
- if (!BN_GENCB_call(cb, 2, tries)) {
- goto err;
- }
- }
- err:
- BN_CTX_end(ctx);
- return ret;
- }
- int RSA_generate_key_ex(RSA *rsa, int bits, BIGNUM *e_value, BN_GENCB *cb) {
- // See FIPS 186-4 appendix B.3. This function implements a generalized version
- // of the FIPS algorithm. |RSA_generate_key_fips| performs additional checks
- // for FIPS-compliant key generation.
- // Always generate RSA keys which are a multiple of 128 bits. Round |bits|
- // down as needed.
- bits &= ~127;
- // Reject excessively small keys.
- if (bits < 256) {
- OPENSSL_PUT_ERROR(RSA, RSA_R_KEY_SIZE_TOO_SMALL);
- return 0;
- }
- // Reject excessively large public exponents. Windows CryptoAPI and Go don't
- // support values larger than 32 bits, so match their limits for generating
- // keys. (|check_modulus_and_exponent_sizes| uses a slightly more conservative
- // value, but we don't need to support generating such keys.)
- // https://github.com/golang/go/issues/3161
- // https://msdn.microsoft.com/en-us/library/aa387685(VS.85).aspx
- if (BN_num_bits(e_value) > 32) {
- OPENSSL_PUT_ERROR(RSA, RSA_R_BAD_E_VALUE);
- return 0;
- }
- int ret = 0;
- int prime_bits = bits / 2;
- BN_CTX *ctx = BN_CTX_new();
- if (ctx == NULL) {
- goto bn_err;
- }
- BN_CTX_start(ctx);
- BIGNUM *totient = BN_CTX_get(ctx);
- BIGNUM *pm1 = BN_CTX_get(ctx);
- BIGNUM *qm1 = BN_CTX_get(ctx);
- BIGNUM *sqrt2 = BN_CTX_get(ctx);
- BIGNUM *pow2_prime_bits_100 = BN_CTX_get(ctx);
- BIGNUM *pow2_prime_bits = BN_CTX_get(ctx);
- if (totient == NULL || pm1 == NULL || qm1 == NULL || sqrt2 == NULL ||
- pow2_prime_bits_100 == NULL || pow2_prime_bits == NULL ||
- !BN_set_bit(pow2_prime_bits_100, prime_bits - 100) ||
- !BN_set_bit(pow2_prime_bits, prime_bits)) {
- goto bn_err;
- }
- // We need the RSA components non-NULL.
- if (!ensure_bignum(&rsa->n) ||
- !ensure_bignum(&rsa->d) ||
- !ensure_bignum(&rsa->e) ||
- !ensure_bignum(&rsa->p) ||
- !ensure_bignum(&rsa->q) ||
- !ensure_bignum(&rsa->dmp1) ||
- !ensure_bignum(&rsa->dmq1)) {
- goto bn_err;
- }
- if (!BN_copy(rsa->e, e_value)) {
- goto bn_err;
- }
- // Compute sqrt2 >= ⌊2^(prime_bits-1)×√2⌋.
- if (!bn_set_words(sqrt2, kBoringSSLRSASqrtTwo, kBoringSSLRSASqrtTwoLen)) {
- goto bn_err;
- }
- int sqrt2_bits = kBoringSSLRSASqrtTwoLen * BN_BITS2;
- assert(sqrt2_bits == (int)BN_num_bits(sqrt2));
- if (sqrt2_bits > prime_bits) {
- // For key sizes up to 3072 (prime_bits = 1536), this is exactly
- // ⌊2^(prime_bits-1)×√2⌋.
- if (!BN_rshift(sqrt2, sqrt2, sqrt2_bits - prime_bits)) {
- goto bn_err;
- }
- } else if (prime_bits > sqrt2_bits) {
- // For key sizes beyond 3072, this is approximate. We err towards retrying
- // to ensure our key is the right size and round up.
- if (!BN_add_word(sqrt2, 1) ||
- !BN_lshift(sqrt2, sqrt2, prime_bits - sqrt2_bits)) {
- goto bn_err;
- }
- }
- assert(prime_bits == (int)BN_num_bits(sqrt2));
- do {
- // Generate p and q, each of size |prime_bits|, using the steps outlined in
- // appendix FIPS 186-4 appendix B.3.3.
- if (!generate_prime(rsa->p, prime_bits, rsa->e, NULL, sqrt2,
- pow2_prime_bits_100, ctx, cb) ||
- !BN_GENCB_call(cb, 3, 0) ||
- !generate_prime(rsa->q, prime_bits, rsa->e, rsa->p, sqrt2,
- pow2_prime_bits_100, ctx, cb) ||
- !BN_GENCB_call(cb, 3, 1)) {
- goto bn_err;
- }
- if (BN_cmp(rsa->p, rsa->q) < 0) {
- BIGNUM *tmp = rsa->p;
- rsa->p = rsa->q;
- rsa->q = tmp;
- }
- // Calculate d = e^(-1) (mod lcm(p-1, q-1)), per FIPS 186-4. This differs
- // from typical RSA implementations which use (p-1)*(q-1).
- //
- // Note this means the size of d might reveal information about p-1 and
- // q-1. However, we do operations with Chinese Remainder Theorem, so we only
- // use d (mod p-1) and d (mod q-1) as exponents. Using a minimal totient
- // does not affect those two values.
- int no_inverse;
- if (!bn_usub_consttime(pm1, rsa->p, BN_value_one()) ||
- !bn_usub_consttime(qm1, rsa->q, BN_value_one()) ||
- !bn_lcm_consttime(totient, pm1, qm1, ctx) ||
- !bn_mod_inverse_consttime(rsa->d, &no_inverse, rsa->e, totient, ctx)) {
- goto bn_err;
- }
- // Retry if |rsa->d| <= 2^|prime_bits|. See appendix B.3.1's guidance on
- // values for d.
- } while (BN_cmp(rsa->d, pow2_prime_bits) <= 0);
- if (// Calculate n.
- !bn_mul_consttime(rsa->n, rsa->p, rsa->q, ctx) ||
- // Calculate d mod (p-1).
- !bn_div_consttime(NULL, rsa->dmp1, rsa->d, pm1, ctx) ||
- // Calculate d mod (q-1)
- !bn_div_consttime(NULL, rsa->dmq1, rsa->d, qm1, ctx)) {
- goto bn_err;
- }
- bn_set_minimal_width(rsa->n);
- // Sanity-check that |rsa->n| has the specified size. This is implied by
- // |generate_prime|'s bounds.
- if (BN_num_bits(rsa->n) != (unsigned)bits) {
- OPENSSL_PUT_ERROR(RSA, ERR_R_INTERNAL_ERROR);
- goto err;
- }
- // Call |freeze_private_key| to compute the inverse of q mod p, by way of
- // |rsa->mont_p|.
- if (!freeze_private_key(rsa, ctx)) {
- goto bn_err;
- }
- // The key generation process is complex and thus error-prone. It could be
- // disastrous to generate and then use a bad key so double-check that the key
- // makes sense.
- if (!RSA_check_key(rsa)) {
- OPENSSL_PUT_ERROR(RSA, RSA_R_INTERNAL_ERROR);
- goto err;
- }
- ret = 1;
- bn_err:
- if (!ret) {
- OPENSSL_PUT_ERROR(RSA, ERR_LIB_BN);
- }
- err:
- if (ctx != NULL) {
- BN_CTX_end(ctx);
- BN_CTX_free(ctx);
- }
- return ret;
- }
- int RSA_generate_key_fips(RSA *rsa, int bits, BN_GENCB *cb) {
- // FIPS 186-4 allows 2048-bit and 3072-bit RSA keys (1024-bit and 1536-bit
- // primes, respectively) with the prime generation method we use.
- if (bits != 2048 && bits != 3072) {
- OPENSSL_PUT_ERROR(RSA, RSA_R_BAD_RSA_PARAMETERS);
- return 0;
- }
- BIGNUM *e = BN_new();
- int ret = e != NULL &&
- BN_set_word(e, RSA_F4) &&
- RSA_generate_key_ex(rsa, bits, e, cb) &&
- RSA_check_fips(rsa);
- BN_free(e);
- return ret;
- }
- DEFINE_METHOD_FUNCTION(RSA_METHOD, RSA_default_method) {
- // All of the methods are NULL to make it easier for the compiler/linker to
- // drop unused functions. The wrapper functions will select the appropriate
- // |rsa_default_*| implementation.
- OPENSSL_memset(out, 0, sizeof(RSA_METHOD));
- out->common.is_static = 1;
- }
|