| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458 |
- /* ====================================================================
- * Copyright (c) 1998-2005 The OpenSSL Project. All rights reserved.
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions
- * are met:
- *
- * 1. Redistributions of source code must retain the above copyright
- * notice, this list of conditions and the following disclaimer.
- *
- * 2. Redistributions in binary form must reproduce the above copyright
- * notice, this list of conditions and the following disclaimer in
- * the documentation and/or other materials provided with the
- * distribution.
- *
- * 3. All advertising materials mentioning features or use of this
- * software must display the following acknowledgment:
- * "This product includes software developed by the OpenSSL Project
- * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
- *
- * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
- * endorse or promote products derived from this software without
- * prior written permission. For written permission, please contact
- * openssl-core@OpenSSL.org.
- *
- * 5. Products derived from this software may not be called "OpenSSL"
- * nor may "OpenSSL" appear in their names without prior written
- * permission of the OpenSSL Project.
- *
- * 6. Redistributions of any form whatsoever must retain the following
- * acknowledgment:
- * "This product includes software developed by the OpenSSL Project
- * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
- *
- * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
- * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
- * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
- * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
- * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
- * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
- * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
- * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
- * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
- * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
- * OF THE POSSIBILITY OF SUCH DAMAGE.
- * ====================================================================
- *
- * This product includes cryptographic software written by Eric Young
- * (eay@cryptsoft.com). This product includes software written by Tim
- * Hudson (tjh@cryptsoft.com). */
- #include <openssl/ecdsa.h>
- #include <assert.h>
- #include <string.h>
- #include <openssl/bn.h>
- #include <openssl/err.h>
- #include <openssl/mem.h>
- #include <openssl/sha.h>
- #include <openssl/type_check.h>
- #include "../bn/internal.h"
- #include "../ec/internal.h"
- #include "../../internal.h"
- // EC_LOOSE_SCALAR is like |EC_SCALAR| but is bounded by 2^|BN_num_bits(order)|
- // rather than |order|.
- typedef union {
- // bytes is the representation of the scalar in little-endian order.
- uint8_t bytes[EC_MAX_SCALAR_BYTES];
- BN_ULONG words[EC_MAX_SCALAR_WORDS];
- } EC_LOOSE_SCALAR;
- static void scalar_add_loose(const EC_GROUP *group, EC_LOOSE_SCALAR *r,
- const EC_LOOSE_SCALAR *a, const EC_SCALAR *b) {
- // Add and subtract one copy of |order| if necessary. We have:
- // |a| + |b| < 2^BN_num_bits(order) + order
- // so this leaves |r| < 2^BN_num_bits(order).
- const BIGNUM *order = &group->order;
- BN_ULONG carry = bn_add_words(r->words, a->words, b->words, order->width);
- EC_LOOSE_SCALAR tmp;
- BN_ULONG v =
- bn_sub_words(tmp.words, r->words, order->d, order->width) - carry;
- bn_select_words(r->words, 0u - v, r->words /* tmp < 0 */,
- tmp.words /* tmp >= 0 */, order->width);
- }
- static int scalar_mod_mul_montgomery(const EC_GROUP *group, EC_SCALAR *r,
- const EC_SCALAR *a, const EC_SCALAR *b) {
- const BIGNUM *order = &group->order;
- return bn_mod_mul_montgomery_small(r->words, order->width, a->words,
- order->width, b->words, order->width,
- group->order_mont);
- }
- static int scalar_mod_mul_montgomery_loose(const EC_GROUP *group, EC_SCALAR *r,
- const EC_LOOSE_SCALAR *a,
- const EC_SCALAR *b) {
- // Although |a| is loose, |bn_mod_mul_montgomery_small| only requires the
- // product not exceed R * |order|. |b| is fully reduced and |a| <
- // 2^BN_num_bits(order) <= R, so this holds.
- const BIGNUM *order = &group->order;
- return bn_mod_mul_montgomery_small(r->words, order->width, a->words,
- order->width, b->words, order->width,
- group->order_mont);
- }
- // digest_to_scalar interprets |digest_len| bytes from |digest| as a scalar for
- // ECDSA. Note this value is not fully reduced modulo the order, only the
- // correct number of bits.
- static void digest_to_scalar(const EC_GROUP *group, EC_LOOSE_SCALAR *out,
- const uint8_t *digest, size_t digest_len) {
- const BIGNUM *order = &group->order;
- size_t num_bits = BN_num_bits(order);
- // Need to truncate digest if it is too long: first truncate whole bytes.
- if (8 * digest_len > num_bits) {
- digest_len = (num_bits + 7) / 8;
- }
- OPENSSL_memset(out, 0, sizeof(EC_SCALAR));
- for (size_t i = 0; i < digest_len; i++) {
- out->bytes[i] = digest[digest_len - 1 - i];
- }
- // If still too long truncate remaining bits with a shift
- if (8 * digest_len > num_bits) {
- size_t shift = 8 - (num_bits & 0x7);
- for (int i = 0; i < order->width - 1; i++) {
- out->words[i] =
- (out->words[i] >> shift) | (out->words[i + 1] << (BN_BITS2 - shift));
- }
- out->words[order->width - 1] >>= shift;
- }
- }
- // field_element_to_scalar reduces |r| modulo |group->order|. |r| must
- // previously have been reduced modulo |group->field|.
- static int field_element_to_scalar(const EC_GROUP *group, BIGNUM *r) {
- // We must have p < 2×order, assuming p is not tiny (p >= 17). Thus rather we
- // can reduce by performing at most one subtraction.
- //
- // Proof: We only work with prime order curves, so the number of points on
- // the curve is the order. Thus Hasse's theorem gives:
- //
- // |order - (p + 1)| <= 2×sqrt(p)
- // p + 1 - order <= 2×sqrt(p)
- // p + 1 - 2×sqrt(p) <= order
- // p + 1 - 2×(p/4) < order (p/4 > sqrt(p) for p >= 17)
- // p/2 < p/2 + 1 < order
- // p < 2×order
- //
- // Additionally, one can manually check this property for built-in curves. It
- // is enforced for legacy custom curves in |EC_GROUP_set_generator|.
- //
- // TODO(davidben): Introduce |EC_FIELD_ELEMENT|, make this a function from
- // |EC_FIELD_ELEMENT| to |EC_SCALAR|, and cut out the |BIGNUM|. Does this need
- // to be constant-time for signing? |r| is the x-coordinate for kG, which is
- // public unless k was rerolled because |s| was zero.
- assert(!BN_is_negative(r));
- assert(BN_cmp(r, &group->field) < 0);
- if (BN_cmp(r, &group->order) >= 0 &&
- !BN_sub(r, r, &group->order)) {
- return 0;
- }
- assert(!BN_is_negative(r));
- assert(BN_cmp(r, &group->order) < 0);
- return 1;
- }
- ECDSA_SIG *ECDSA_SIG_new(void) {
- ECDSA_SIG *sig = OPENSSL_malloc(sizeof(ECDSA_SIG));
- if (sig == NULL) {
- return NULL;
- }
- sig->r = BN_new();
- sig->s = BN_new();
- if (sig->r == NULL || sig->s == NULL) {
- ECDSA_SIG_free(sig);
- return NULL;
- }
- return sig;
- }
- void ECDSA_SIG_free(ECDSA_SIG *sig) {
- if (sig == NULL) {
- return;
- }
- BN_free(sig->r);
- BN_free(sig->s);
- OPENSSL_free(sig);
- }
- void ECDSA_SIG_get0(const ECDSA_SIG *sig, const BIGNUM **out_r,
- const BIGNUM **out_s) {
- if (out_r != NULL) {
- *out_r = sig->r;
- }
- if (out_s != NULL) {
- *out_s = sig->s;
- }
- }
- int ECDSA_SIG_set0(ECDSA_SIG *sig, BIGNUM *r, BIGNUM *s) {
- if (r == NULL || s == NULL) {
- return 0;
- }
- BN_free(sig->r);
- BN_free(sig->s);
- sig->r = r;
- sig->s = s;
- return 1;
- }
- int ECDSA_do_verify(const uint8_t *digest, size_t digest_len,
- const ECDSA_SIG *sig, const EC_KEY *eckey) {
- const EC_GROUP *group = EC_KEY_get0_group(eckey);
- const EC_POINT *pub_key = EC_KEY_get0_public_key(eckey);
- if (group == NULL || pub_key == NULL || sig == NULL) {
- OPENSSL_PUT_ERROR(ECDSA, ECDSA_R_MISSING_PARAMETERS);
- return 0;
- }
- BN_CTX *ctx = BN_CTX_new();
- if (!ctx) {
- OPENSSL_PUT_ERROR(ECDSA, ERR_R_MALLOC_FAILURE);
- return 0;
- }
- int ret = 0;
- EC_POINT *point = NULL;
- BN_CTX_start(ctx);
- BIGNUM *X = BN_CTX_get(ctx);
- if (X == NULL) {
- OPENSSL_PUT_ERROR(ECDSA, ERR_R_BN_LIB);
- goto err;
- }
- EC_SCALAR r, s, u1, u2, s_inv_mont;
- EC_LOOSE_SCALAR m;
- const BIGNUM *order = EC_GROUP_get0_order(group);
- if (BN_is_zero(sig->r) ||
- !ec_bignum_to_scalar(group, &r, sig->r) ||
- BN_is_zero(sig->s) ||
- !ec_bignum_to_scalar(group, &s, sig->s)) {
- OPENSSL_PUT_ERROR(ECDSA, ECDSA_R_BAD_SIGNATURE);
- goto err;
- }
- // s_inv_mont = s^-1 mod order. We convert the result to Montgomery form for
- // the products below.
- int no_inverse;
- if (!BN_mod_inverse_odd(X, &no_inverse, sig->s, order, ctx) ||
- // TODO(davidben): Add a words version of |BN_mod_inverse_odd| and write
- // into |s_inv_mont| directly.
- !ec_bignum_to_scalar_unchecked(group, &s_inv_mont, X) ||
- !bn_to_montgomery_small(s_inv_mont.words, order->width, s_inv_mont.words,
- order->width, group->order_mont)) {
- goto err;
- }
- // u1 = m * s^-1 mod order
- // u2 = r * s^-1 mod order
- //
- // |s_inv_mont| is in Montgomery form while |m| and |r| are not, so |u1| and
- // |u2| will be taken out of Montgomery form, as desired.
- digest_to_scalar(group, &m, digest, digest_len);
- if (!scalar_mod_mul_montgomery_loose(group, &u1, &m, &s_inv_mont) ||
- !scalar_mod_mul_montgomery(group, &u2, &r, &s_inv_mont)) {
- goto err;
- }
- point = EC_POINT_new(group);
- if (point == NULL) {
- OPENSSL_PUT_ERROR(ECDSA, ERR_R_MALLOC_FAILURE);
- goto err;
- }
- if (!ec_point_mul_scalar_public(group, point, &u1, pub_key, &u2, ctx)) {
- OPENSSL_PUT_ERROR(ECDSA, ERR_R_EC_LIB);
- goto err;
- }
- if (!EC_POINT_get_affine_coordinates_GFp(group, point, X, NULL, ctx)) {
- OPENSSL_PUT_ERROR(ECDSA, ERR_R_EC_LIB);
- goto err;
- }
- if (!field_element_to_scalar(group, X)) {
- OPENSSL_PUT_ERROR(ECDSA, ERR_R_BN_LIB);
- goto err;
- }
- // The signature is correct iff |X| is equal to |sig->r|.
- if (BN_ucmp(X, sig->r) != 0) {
- OPENSSL_PUT_ERROR(ECDSA, ECDSA_R_BAD_SIGNATURE);
- goto err;
- }
- ret = 1;
- err:
- BN_CTX_end(ctx);
- BN_CTX_free(ctx);
- EC_POINT_free(point);
- return ret;
- }
- static int ecdsa_sign_setup(const EC_KEY *eckey, BN_CTX *ctx,
- EC_SCALAR *out_kinv_mont, BIGNUM **rp,
- const uint8_t *digest, size_t digest_len,
- const EC_SCALAR *priv_key) {
- EC_POINT *tmp_point = NULL;
- int ret = 0;
- EC_SCALAR k;
- BIGNUM *r = BN_new(); // this value is later returned in *rp
- if (r == NULL) {
- OPENSSL_PUT_ERROR(ECDSA, ERR_R_MALLOC_FAILURE);
- goto err;
- }
- const EC_GROUP *group = EC_KEY_get0_group(eckey);
- const BIGNUM *order = EC_GROUP_get0_order(group);
- tmp_point = EC_POINT_new(group);
- if (tmp_point == NULL) {
- OPENSSL_PUT_ERROR(ECDSA, ERR_R_EC_LIB);
- goto err;
- }
- // Check that the size of the group order is FIPS compliant (FIPS 186-4
- // B.5.2).
- if (BN_num_bits(order) < 160) {
- OPENSSL_PUT_ERROR(ECDSA, EC_R_INVALID_GROUP_ORDER);
- goto err;
- }
- do {
- // Include the private key and message digest in the k generation.
- if (eckey->fixed_k != NULL) {
- if (!ec_bignum_to_scalar(group, &k, eckey->fixed_k)) {
- goto err;
- }
- } else {
- // Pass a SHA512 hash of the private key and digest as additional data
- // into the RBG. This is a hardening measure against entropy failure.
- OPENSSL_COMPILE_ASSERT(SHA512_DIGEST_LENGTH >= 32,
- additional_data_is_too_large_for_sha512);
- SHA512_CTX sha;
- uint8_t additional_data[SHA512_DIGEST_LENGTH];
- SHA512_Init(&sha);
- SHA512_Update(&sha, priv_key->words, order->width * sizeof(BN_ULONG));
- SHA512_Update(&sha, digest, digest_len);
- SHA512_Final(additional_data, &sha);
- if (!ec_random_nonzero_scalar(group, &k, additional_data)) {
- goto err;
- }
- }
- // Compute k^-1. We leave it in the Montgomery domain as an optimization for
- // later operations.
- if (!bn_to_montgomery_small(out_kinv_mont->words, order->width, k.words,
- order->width, group->order_mont) ||
- !bn_mod_inverse_prime_mont_small(out_kinv_mont->words, order->width,
- out_kinv_mont->words, order->width,
- group->order_mont)) {
- goto err;
- }
- // Compute r, the x-coordinate of generator * k.
- if (!ec_point_mul_scalar(group, tmp_point, &k, NULL, NULL, ctx) ||
- !EC_POINT_get_affine_coordinates_GFp(group, tmp_point, r, NULL,
- ctx)) {
- goto err;
- }
- if (!field_element_to_scalar(group, r)) {
- goto err;
- }
- } while (BN_is_zero(r));
- BN_clear_free(*rp);
- *rp = r;
- r = NULL;
- ret = 1;
- err:
- OPENSSL_cleanse(&k, sizeof(k));
- BN_clear_free(r);
- EC_POINT_free(tmp_point);
- return ret;
- }
- ECDSA_SIG *ECDSA_do_sign(const uint8_t *digest, size_t digest_len,
- const EC_KEY *eckey) {
- if (eckey->ecdsa_meth && eckey->ecdsa_meth->sign) {
- OPENSSL_PUT_ERROR(ECDSA, ECDSA_R_NOT_IMPLEMENTED);
- return NULL;
- }
- const EC_GROUP *group = EC_KEY_get0_group(eckey);
- if (group == NULL || eckey->priv_key == NULL) {
- OPENSSL_PUT_ERROR(ECDSA, ERR_R_PASSED_NULL_PARAMETER);
- return NULL;
- }
- const BIGNUM *order = EC_GROUP_get0_order(group);
- const EC_SCALAR *priv_key = &eckey->priv_key->scalar;
- int ok = 0;
- ECDSA_SIG *ret = ECDSA_SIG_new();
- BN_CTX *ctx = BN_CTX_new();
- EC_SCALAR kinv_mont, r_mont, s;
- EC_LOOSE_SCALAR m, tmp;
- if (ret == NULL || ctx == NULL) {
- OPENSSL_PUT_ERROR(ECDSA, ERR_R_MALLOC_FAILURE);
- return NULL;
- }
- digest_to_scalar(group, &m, digest, digest_len);
- for (;;) {
- if (!ecdsa_sign_setup(eckey, ctx, &kinv_mont, &ret->r, digest, digest_len,
- priv_key)) {
- goto err;
- }
- // Compute priv_key * r (mod order). Note if only one parameter is in the
- // Montgomery domain, |scalar_mod_mul_montgomery| will compute the answer in
- // the normal domain.
- if (!ec_bignum_to_scalar(group, &r_mont, ret->r) ||
- !bn_to_montgomery_small(r_mont.words, order->width, r_mont.words,
- order->width, group->order_mont) ||
- !scalar_mod_mul_montgomery(group, &s, priv_key, &r_mont)) {
- goto err;
- }
- // Compute tmp = m + priv_key * r.
- scalar_add_loose(group, &tmp, &m, &s);
- // Finally, multiply s by k^-1. That was retained in Montgomery form, so the
- // same technique as the previous multiplication works.
- if (!scalar_mod_mul_montgomery_loose(group, &s, &tmp, &kinv_mont) ||
- !bn_set_words(ret->s, s.words, order->width)) {
- goto err;
- }
- if (!BN_is_zero(ret->s)) {
- // s != 0 => we have a valid signature
- break;
- }
- }
- ok = 1;
- err:
- if (!ok) {
- ECDSA_SIG_free(ret);
- ret = NULL;
- }
- BN_CTX_free(ctx);
- OPENSSL_cleanse(&kinv_mont, sizeof(kinv_mont));
- OPENSSL_cleanse(&r_mont, sizeof(r_mont));
- OPENSSL_cleanse(&s, sizeof(s));
- OPENSSL_cleanse(&tmp, sizeof(tmp));
- OPENSSL_cleanse(&m, sizeof(m));
- return ret;
- }
|