p224-64.c 40 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104
  1. /* Copyright (c) 2015, Google Inc.
  2. *
  3. * Permission to use, copy, modify, and/or distribute this software for any
  4. * purpose with or without fee is hereby granted, provided that the above
  5. * copyright notice and this permission notice appear in all copies.
  6. *
  7. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  8. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  9. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
  10. * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  11. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
  12. * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
  13. * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */
  14. // A 64-bit implementation of the NIST P-224 elliptic curve point multiplication
  15. //
  16. // Inspired by Daniel J. Bernstein's public domain nistp224 implementation
  17. // and Adam Langley's public domain 64-bit C implementation of curve25519.
  18. #include <openssl/base.h>
  19. #include <openssl/bn.h>
  20. #include <openssl/ec.h>
  21. #include <openssl/err.h>
  22. #include <openssl/mem.h>
  23. #include <string.h>
  24. #include "internal.h"
  25. #include "../delocate.h"
  26. #include "../../internal.h"
  27. #if defined(BORINGSSL_HAS_UINT128) && !defined(OPENSSL_SMALL)
  28. // Field elements are represented as a_0 + 2^56*a_1 + 2^112*a_2 + 2^168*a_3
  29. // using 64-bit coefficients called 'limbs', and sometimes (for multiplication
  30. // results) as b_0 + 2^56*b_1 + 2^112*b_2 + 2^168*b_3 + 2^224*b_4 + 2^280*b_5 +
  31. // 2^336*b_6 using 128-bit coefficients called 'widelimbs'. A 4-p224_limb
  32. // representation is an 'p224_felem'; a 7-p224_widelimb representation is a
  33. // 'p224_widefelem'. Even within felems, bits of adjacent limbs overlap, and we
  34. // don't always reduce the representations: we ensure that inputs to each
  35. // p224_felem multiplication satisfy a_i < 2^60, so outputs satisfy b_i <
  36. // 4*2^60*2^60, and fit into a 128-bit word without overflow. The coefficients
  37. // are then again partially reduced to obtain an p224_felem satisfying a_i <
  38. // 2^57. We only reduce to the unique minimal representation at the end of the
  39. // computation.
  40. typedef uint64_t p224_limb;
  41. typedef uint128_t p224_widelimb;
  42. typedef p224_limb p224_felem[4];
  43. typedef p224_widelimb p224_widefelem[7];
  44. // Field element represented as a byte arrary. 28*8 = 224 bits is also the
  45. // group order size for the elliptic curve, and we also use this type for
  46. // scalars for point multiplication.
  47. typedef uint8_t p224_felem_bytearray[28];
  48. // Precomputed multiples of the standard generator
  49. // Points are given in coordinates (X, Y, Z) where Z normally is 1
  50. // (0 for the point at infinity).
  51. // For each field element, slice a_0 is word 0, etc.
  52. //
  53. // The table has 2 * 16 elements, starting with the following:
  54. // index | bits | point
  55. // ------+---------+------------------------------
  56. // 0 | 0 0 0 0 | 0G
  57. // 1 | 0 0 0 1 | 1G
  58. // 2 | 0 0 1 0 | 2^56G
  59. // 3 | 0 0 1 1 | (2^56 + 1)G
  60. // 4 | 0 1 0 0 | 2^112G
  61. // 5 | 0 1 0 1 | (2^112 + 1)G
  62. // 6 | 0 1 1 0 | (2^112 + 2^56)G
  63. // 7 | 0 1 1 1 | (2^112 + 2^56 + 1)G
  64. // 8 | 1 0 0 0 | 2^168G
  65. // 9 | 1 0 0 1 | (2^168 + 1)G
  66. // 10 | 1 0 1 0 | (2^168 + 2^56)G
  67. // 11 | 1 0 1 1 | (2^168 + 2^56 + 1)G
  68. // 12 | 1 1 0 0 | (2^168 + 2^112)G
  69. // 13 | 1 1 0 1 | (2^168 + 2^112 + 1)G
  70. // 14 | 1 1 1 0 | (2^168 + 2^112 + 2^56)G
  71. // 15 | 1 1 1 1 | (2^168 + 2^112 + 2^56 + 1)G
  72. // followed by a copy of this with each element multiplied by 2^28.
  73. //
  74. // The reason for this is so that we can clock bits into four different
  75. // locations when doing simple scalar multiplies against the base point,
  76. // and then another four locations using the second 16 elements.
  77. static const p224_felem g_p224_pre_comp[2][16][3] = {
  78. {{{0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}},
  79. {{0x3280d6115c1d21, 0xc1d356c2112234, 0x7f321390b94a03, 0xb70e0cbd6bb4bf},
  80. {0xd5819985007e34, 0x75a05a07476444, 0xfb4c22dfe6cd43, 0xbd376388b5f723},
  81. {1, 0, 0, 0}},
  82. {{0xfd9675666ebbe9, 0xbca7664d40ce5e, 0x2242df8d8a2a43, 0x1f49bbb0f99bc5},
  83. {0x29e0b892dc9c43, 0xece8608436e662, 0xdc858f185310d0, 0x9812dd4eb8d321},
  84. {1, 0, 0, 0}},
  85. {{0x6d3e678d5d8eb8, 0x559eed1cb362f1, 0x16e9a3bbce8a3f, 0xeedcccd8c2a748},
  86. {0xf19f90ed50266d, 0xabf2b4bf65f9df, 0x313865468fafec, 0x5cb379ba910a17},
  87. {1, 0, 0, 0}},
  88. {{0x0641966cab26e3, 0x91fb2991fab0a0, 0xefec27a4e13a0b, 0x0499aa8a5f8ebe},
  89. {0x7510407766af5d, 0x84d929610d5450, 0x81d77aae82f706, 0x6916f6d4338c5b},
  90. {1, 0, 0, 0}},
  91. {{0xea95ac3b1f15c6, 0x086000905e82d4, 0xdd323ae4d1c8b1, 0x932b56be7685a3},
  92. {0x9ef93dea25dbbf, 0x41665960f390f0, 0xfdec76dbe2a8a7, 0x523e80f019062a},
  93. {1, 0, 0, 0}},
  94. {{0x822fdd26732c73, 0xa01c83531b5d0f, 0x363f37347c1ba4, 0xc391b45c84725c},
  95. {0xbbd5e1b2d6ad24, 0xddfbcde19dfaec, 0xc393da7e222a7f, 0x1efb7890ede244},
  96. {1, 0, 0, 0}},
  97. {{0x4c9e90ca217da1, 0xd11beca79159bb, 0xff8d33c2c98b7c, 0x2610b39409f849},
  98. {0x44d1352ac64da0, 0xcdbb7b2c46b4fb, 0x966c079b753c89, 0xfe67e4e820b112},
  99. {1, 0, 0, 0}},
  100. {{0xe28cae2df5312d, 0xc71b61d16f5c6e, 0x79b7619a3e7c4c, 0x05c73240899b47},
  101. {0x9f7f6382c73e3a, 0x18615165c56bda, 0x641fab2116fd56, 0x72855882b08394},
  102. {1, 0, 0, 0}},
  103. {{0x0469182f161c09, 0x74a98ca8d00fb5, 0xb89da93489a3e0, 0x41c98768fb0c1d},
  104. {0xe5ea05fb32da81, 0x3dce9ffbca6855, 0x1cfe2d3fbf59e6, 0x0e5e03408738a7},
  105. {1, 0, 0, 0}},
  106. {{0xdab22b2333e87f, 0x4430137a5dd2f6, 0xe03ab9f738beb8, 0xcb0c5d0dc34f24},
  107. {0x764a7df0c8fda5, 0x185ba5c3fa2044, 0x9281d688bcbe50, 0xc40331df893881},
  108. {1, 0, 0, 0}},
  109. {{0xb89530796f0f60, 0xade92bd26909a3, 0x1a0c83fb4884da, 0x1765bf22a5a984},
  110. {0x772a9ee75db09e, 0x23bc6c67cec16f, 0x4c1edba8b14e2f, 0xe2a215d9611369},
  111. {1, 0, 0, 0}},
  112. {{0x571e509fb5efb3, 0xade88696410552, 0xc8ae85fada74fe, 0x6c7e4be83bbde3},
  113. {0xff9f51160f4652, 0xb47ce2495a6539, 0xa2946c53b582f4, 0x286d2db3ee9a60},
  114. {1, 0, 0, 0}},
  115. {{0x40bbd5081a44af, 0x0995183b13926c, 0xbcefba6f47f6d0, 0x215619e9cc0057},
  116. {0x8bc94d3b0df45e, 0xf11c54a3694f6f, 0x8631b93cdfe8b5, 0xe7e3f4b0982db9},
  117. {1, 0, 0, 0}},
  118. {{0xb17048ab3e1c7b, 0xac38f36ff8a1d8, 0x1c29819435d2c6, 0xc813132f4c07e9},
  119. {0x2891425503b11f, 0x08781030579fea, 0xf5426ba5cc9674, 0x1e28ebf18562bc},
  120. {1, 0, 0, 0}},
  121. {{0x9f31997cc864eb, 0x06cd91d28b5e4c, 0xff17036691a973, 0xf1aef351497c58},
  122. {0xdd1f2d600564ff, 0xdead073b1402db, 0x74a684435bd693, 0xeea7471f962558},
  123. {1, 0, 0, 0}}},
  124. {{{0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}},
  125. {{0x9665266dddf554, 0x9613d78b60ef2d, 0xce27a34cdba417, 0xd35ab74d6afc31},
  126. {0x85ccdd22deb15e, 0x2137e5783a6aab, 0xa141cffd8c93c6, 0x355a1830e90f2d},
  127. {1, 0, 0, 0}},
  128. {{0x1a494eadaade65, 0xd6da4da77fe53c, 0xe7992996abec86, 0x65c3553c6090e3},
  129. {0xfa610b1fb09346, 0xf1c6540b8a4aaf, 0xc51a13ccd3cbab, 0x02995b1b18c28a},
  130. {1, 0, 0, 0}},
  131. {{0x7874568e7295ef, 0x86b419fbe38d04, 0xdc0690a7550d9a, 0xd3966a44beac33},
  132. {0x2b7280ec29132f, 0xbeaa3b6a032df3, 0xdc7dd88ae41200, 0xd25e2513e3a100},
  133. {1, 0, 0, 0}},
  134. {{0x924857eb2efafd, 0xac2bce41223190, 0x8edaa1445553fc, 0x825800fd3562d5},
  135. {0x8d79148ea96621, 0x23a01c3dd9ed8d, 0xaf8b219f9416b5, 0xd8db0cc277daea},
  136. {1, 0, 0, 0}},
  137. {{0x76a9c3b1a700f0, 0xe9acd29bc7e691, 0x69212d1a6b0327, 0x6322e97fe154be},
  138. {0x469fc5465d62aa, 0x8d41ed18883b05, 0x1f8eae66c52b88, 0xe4fcbe9325be51},
  139. {1, 0, 0, 0}},
  140. {{0x825fdf583cac16, 0x020b857c7b023a, 0x683c17744b0165, 0x14ffd0a2daf2f1},
  141. {0x323b36184218f9, 0x4944ec4e3b47d4, 0xc15b3080841acf, 0x0bced4b01a28bb},
  142. {1, 0, 0, 0}},
  143. {{0x92ac22230df5c4, 0x52f33b4063eda8, 0xcb3f19870c0c93, 0x40064f2ba65233},
  144. {0xfe16f0924f8992, 0x012da25af5b517, 0x1a57bb24f723a6, 0x06f8bc76760def},
  145. {1, 0, 0, 0}},
  146. {{0x4a7084f7817cb9, 0xbcab0738ee9a78, 0x3ec11e11d9c326, 0xdc0fe90e0f1aae},
  147. {0xcf639ea5f98390, 0x5c350aa22ffb74, 0x9afae98a4047b7, 0x956ec2d617fc45},
  148. {1, 0, 0, 0}},
  149. {{0x4306d648c1be6a, 0x9247cd8bc9a462, 0xf5595e377d2f2e, 0xbd1c3caff1a52e},
  150. {0x045e14472409d0, 0x29f3e17078f773, 0x745a602b2d4f7d, 0x191837685cdfbb},
  151. {1, 0, 0, 0}},
  152. {{0x5b6ee254a8cb79, 0x4953433f5e7026, 0xe21faeb1d1def4, 0xc4c225785c09de},
  153. {0x307ce7bba1e518, 0x31b125b1036db8, 0x47e91868839e8f, 0xc765866e33b9f3},
  154. {1, 0, 0, 0}},
  155. {{0x3bfece24f96906, 0x4794da641e5093, 0xde5df64f95db26, 0x297ecd89714b05},
  156. {0x701bd3ebb2c3aa, 0x7073b4f53cb1d5, 0x13c5665658af16, 0x9895089d66fe58},
  157. {1, 0, 0, 0}},
  158. {{0x0fef05f78c4790, 0x2d773633b05d2e, 0x94229c3a951c94, 0xbbbd70df4911bb},
  159. {0xb2c6963d2c1168, 0x105f47a72b0d73, 0x9fdf6111614080, 0x7b7e94b39e67b0},
  160. {1, 0, 0, 0}},
  161. {{0xad1a7d6efbe2b3, 0xf012482c0da69d, 0x6b3bdf12438345, 0x40d7558d7aa4d9},
  162. {0x8a09fffb5c6d3d, 0x9a356e5d9ffd38, 0x5973f15f4f9b1c, 0xdcd5f59f63c3ea},
  163. {1, 0, 0, 0}},
  164. {{0xacf39f4c5ca7ab, 0x4c8071cc5fd737, 0xc64e3602cd1184, 0x0acd4644c9abba},
  165. {0x6c011a36d8bf6e, 0xfecd87ba24e32a, 0x19f6f56574fad8, 0x050b204ced9405},
  166. {1, 0, 0, 0}},
  167. {{0xed4f1cae7d9a96, 0x5ceef7ad94c40a, 0x778e4a3bf3ef9b, 0x7405783dc3b55e},
  168. {0x32477c61b6e8c6, 0xb46a97570f018b, 0x91176d0a7e95d1, 0x3df90fbc4c7d0e},
  169. {1, 0, 0, 0}}}};
  170. static uint64_t p224_load_u64(const uint8_t in[8]) {
  171. uint64_t ret;
  172. OPENSSL_memcpy(&ret, in, sizeof(ret));
  173. return ret;
  174. }
  175. // Helper functions to convert field elements to/from internal representation
  176. static void p224_bin28_to_felem(p224_felem out, const uint8_t in[28]) {
  177. out[0] = p224_load_u64(in) & 0x00ffffffffffffff;
  178. out[1] = p224_load_u64(in + 7) & 0x00ffffffffffffff;
  179. out[2] = p224_load_u64(in + 14) & 0x00ffffffffffffff;
  180. out[3] = p224_load_u64(in + 20) >> 8;
  181. }
  182. static void p224_felem_to_bin28(uint8_t out[28], const p224_felem in) {
  183. for (size_t i = 0; i < 7; ++i) {
  184. out[i] = in[0] >> (8 * i);
  185. out[i + 7] = in[1] >> (8 * i);
  186. out[i + 14] = in[2] >> (8 * i);
  187. out[i + 21] = in[3] >> (8 * i);
  188. }
  189. }
  190. // To preserve endianness when using BN_bn2bin and BN_bin2bn
  191. static void p224_flip_endian(uint8_t *out, const uint8_t *in, size_t len) {
  192. for (size_t i = 0; i < len; ++i) {
  193. out[i] = in[len - 1 - i];
  194. }
  195. }
  196. // From OpenSSL BIGNUM to internal representation
  197. static int p224_BN_to_felem(p224_felem out, const BIGNUM *bn) {
  198. // BN_bn2bin eats leading zeroes
  199. p224_felem_bytearray b_out;
  200. OPENSSL_memset(b_out, 0, sizeof(b_out));
  201. size_t num_bytes = BN_num_bytes(bn);
  202. if (num_bytes > sizeof(b_out) ||
  203. BN_is_negative(bn)) {
  204. OPENSSL_PUT_ERROR(EC, EC_R_BIGNUM_OUT_OF_RANGE);
  205. return 0;
  206. }
  207. p224_felem_bytearray b_in;
  208. num_bytes = BN_bn2bin(bn, b_in);
  209. p224_flip_endian(b_out, b_in, num_bytes);
  210. p224_bin28_to_felem(out, b_out);
  211. return 1;
  212. }
  213. // From internal representation to OpenSSL BIGNUM
  214. static BIGNUM *p224_felem_to_BN(BIGNUM *out, const p224_felem in) {
  215. p224_felem_bytearray b_in, b_out;
  216. p224_felem_to_bin28(b_in, in);
  217. p224_flip_endian(b_out, b_in, sizeof(b_out));
  218. return BN_bin2bn(b_out, sizeof(b_out), out);
  219. }
  220. // Field operations, using the internal representation of field elements.
  221. // NB! These operations are specific to our point multiplication and cannot be
  222. // expected to be correct in general - e.g., multiplication with a large scalar
  223. // will cause an overflow.
  224. static void p224_felem_assign(p224_felem out, const p224_felem in) {
  225. out[0] = in[0];
  226. out[1] = in[1];
  227. out[2] = in[2];
  228. out[3] = in[3];
  229. }
  230. // Sum two field elements: out += in
  231. static void p224_felem_sum(p224_felem out, const p224_felem in) {
  232. out[0] += in[0];
  233. out[1] += in[1];
  234. out[2] += in[2];
  235. out[3] += in[3];
  236. }
  237. // Subtract field elements: out -= in
  238. // Assumes in[i] < 2^57
  239. static void p224_felem_diff(p224_felem out, const p224_felem in) {
  240. static const p224_limb two58p2 =
  241. (((p224_limb)1) << 58) + (((p224_limb)1) << 2);
  242. static const p224_limb two58m2 =
  243. (((p224_limb)1) << 58) - (((p224_limb)1) << 2);
  244. static const p224_limb two58m42m2 =
  245. (((p224_limb)1) << 58) - (((p224_limb)1) << 42) - (((p224_limb)1) << 2);
  246. // Add 0 mod 2^224-2^96+1 to ensure out > in
  247. out[0] += two58p2;
  248. out[1] += two58m42m2;
  249. out[2] += two58m2;
  250. out[3] += two58m2;
  251. out[0] -= in[0];
  252. out[1] -= in[1];
  253. out[2] -= in[2];
  254. out[3] -= in[3];
  255. }
  256. // Subtract in unreduced 128-bit mode: out -= in
  257. // Assumes in[i] < 2^119
  258. static void p224_widefelem_diff(p224_widefelem out, const p224_widefelem in) {
  259. static const p224_widelimb two120 = ((p224_widelimb)1) << 120;
  260. static const p224_widelimb two120m64 =
  261. (((p224_widelimb)1) << 120) - (((p224_widelimb)1) << 64);
  262. static const p224_widelimb two120m104m64 = (((p224_widelimb)1) << 120) -
  263. (((p224_widelimb)1) << 104) -
  264. (((p224_widelimb)1) << 64);
  265. // Add 0 mod 2^224-2^96+1 to ensure out > in
  266. out[0] += two120;
  267. out[1] += two120m64;
  268. out[2] += two120m64;
  269. out[3] += two120;
  270. out[4] += two120m104m64;
  271. out[5] += two120m64;
  272. out[6] += two120m64;
  273. out[0] -= in[0];
  274. out[1] -= in[1];
  275. out[2] -= in[2];
  276. out[3] -= in[3];
  277. out[4] -= in[4];
  278. out[5] -= in[5];
  279. out[6] -= in[6];
  280. }
  281. // Subtract in mixed mode: out128 -= in64
  282. // in[i] < 2^63
  283. static void p224_felem_diff_128_64(p224_widefelem out, const p224_felem in) {
  284. static const p224_widelimb two64p8 =
  285. (((p224_widelimb)1) << 64) + (((p224_widelimb)1) << 8);
  286. static const p224_widelimb two64m8 =
  287. (((p224_widelimb)1) << 64) - (((p224_widelimb)1) << 8);
  288. static const p224_widelimb two64m48m8 = (((p224_widelimb)1) << 64) -
  289. (((p224_widelimb)1) << 48) -
  290. (((p224_widelimb)1) << 8);
  291. // Add 0 mod 2^224-2^96+1 to ensure out > in
  292. out[0] += two64p8;
  293. out[1] += two64m48m8;
  294. out[2] += two64m8;
  295. out[3] += two64m8;
  296. out[0] -= in[0];
  297. out[1] -= in[1];
  298. out[2] -= in[2];
  299. out[3] -= in[3];
  300. }
  301. // Multiply a field element by a scalar: out = out * scalar
  302. // The scalars we actually use are small, so results fit without overflow
  303. static void p224_felem_scalar(p224_felem out, const p224_limb scalar) {
  304. out[0] *= scalar;
  305. out[1] *= scalar;
  306. out[2] *= scalar;
  307. out[3] *= scalar;
  308. }
  309. // Multiply an unreduced field element by a scalar: out = out * scalar
  310. // The scalars we actually use are small, so results fit without overflow
  311. static void p224_widefelem_scalar(p224_widefelem out,
  312. const p224_widelimb scalar) {
  313. out[0] *= scalar;
  314. out[1] *= scalar;
  315. out[2] *= scalar;
  316. out[3] *= scalar;
  317. out[4] *= scalar;
  318. out[5] *= scalar;
  319. out[6] *= scalar;
  320. }
  321. // Square a field element: out = in^2
  322. static void p224_felem_square(p224_widefelem out, const p224_felem in) {
  323. p224_limb tmp0, tmp1, tmp2;
  324. tmp0 = 2 * in[0];
  325. tmp1 = 2 * in[1];
  326. tmp2 = 2 * in[2];
  327. out[0] = ((p224_widelimb)in[0]) * in[0];
  328. out[1] = ((p224_widelimb)in[0]) * tmp1;
  329. out[2] = ((p224_widelimb)in[0]) * tmp2 + ((p224_widelimb)in[1]) * in[1];
  330. out[3] = ((p224_widelimb)in[3]) * tmp0 + ((p224_widelimb)in[1]) * tmp2;
  331. out[4] = ((p224_widelimb)in[3]) * tmp1 + ((p224_widelimb)in[2]) * in[2];
  332. out[5] = ((p224_widelimb)in[3]) * tmp2;
  333. out[6] = ((p224_widelimb)in[3]) * in[3];
  334. }
  335. // Multiply two field elements: out = in1 * in2
  336. static void p224_felem_mul(p224_widefelem out, const p224_felem in1,
  337. const p224_felem in2) {
  338. out[0] = ((p224_widelimb)in1[0]) * in2[0];
  339. out[1] = ((p224_widelimb)in1[0]) * in2[1] + ((p224_widelimb)in1[1]) * in2[0];
  340. out[2] = ((p224_widelimb)in1[0]) * in2[2] + ((p224_widelimb)in1[1]) * in2[1] +
  341. ((p224_widelimb)in1[2]) * in2[0];
  342. out[3] = ((p224_widelimb)in1[0]) * in2[3] + ((p224_widelimb)in1[1]) * in2[2] +
  343. ((p224_widelimb)in1[2]) * in2[1] + ((p224_widelimb)in1[3]) * in2[0];
  344. out[4] = ((p224_widelimb)in1[1]) * in2[3] + ((p224_widelimb)in1[2]) * in2[2] +
  345. ((p224_widelimb)in1[3]) * in2[1];
  346. out[5] = ((p224_widelimb)in1[2]) * in2[3] + ((p224_widelimb)in1[3]) * in2[2];
  347. out[6] = ((p224_widelimb)in1[3]) * in2[3];
  348. }
  349. // Reduce seven 128-bit coefficients to four 64-bit coefficients.
  350. // Requires in[i] < 2^126,
  351. // ensures out[0] < 2^56, out[1] < 2^56, out[2] < 2^56, out[3] <= 2^56 + 2^16
  352. static void p224_felem_reduce(p224_felem out, const p224_widefelem in) {
  353. static const p224_widelimb two127p15 =
  354. (((p224_widelimb)1) << 127) + (((p224_widelimb)1) << 15);
  355. static const p224_widelimb two127m71 =
  356. (((p224_widelimb)1) << 127) - (((p224_widelimb)1) << 71);
  357. static const p224_widelimb two127m71m55 = (((p224_widelimb)1) << 127) -
  358. (((p224_widelimb)1) << 71) -
  359. (((p224_widelimb)1) << 55);
  360. p224_widelimb output[5];
  361. // Add 0 mod 2^224-2^96+1 to ensure all differences are positive
  362. output[0] = in[0] + two127p15;
  363. output[1] = in[1] + two127m71m55;
  364. output[2] = in[2] + two127m71;
  365. output[3] = in[3];
  366. output[4] = in[4];
  367. // Eliminate in[4], in[5], in[6]
  368. output[4] += in[6] >> 16;
  369. output[3] += (in[6] & 0xffff) << 40;
  370. output[2] -= in[6];
  371. output[3] += in[5] >> 16;
  372. output[2] += (in[5] & 0xffff) << 40;
  373. output[1] -= in[5];
  374. output[2] += output[4] >> 16;
  375. output[1] += (output[4] & 0xffff) << 40;
  376. output[0] -= output[4];
  377. // Carry 2 -> 3 -> 4
  378. output[3] += output[2] >> 56;
  379. output[2] &= 0x00ffffffffffffff;
  380. output[4] = output[3] >> 56;
  381. output[3] &= 0x00ffffffffffffff;
  382. // Now output[2] < 2^56, output[3] < 2^56, output[4] < 2^72
  383. // Eliminate output[4]
  384. output[2] += output[4] >> 16;
  385. // output[2] < 2^56 + 2^56 = 2^57
  386. output[1] += (output[4] & 0xffff) << 40;
  387. output[0] -= output[4];
  388. // Carry 0 -> 1 -> 2 -> 3
  389. output[1] += output[0] >> 56;
  390. out[0] = output[0] & 0x00ffffffffffffff;
  391. output[2] += output[1] >> 56;
  392. // output[2] < 2^57 + 2^72
  393. out[1] = output[1] & 0x00ffffffffffffff;
  394. output[3] += output[2] >> 56;
  395. // output[3] <= 2^56 + 2^16
  396. out[2] = output[2] & 0x00ffffffffffffff;
  397. // out[0] < 2^56, out[1] < 2^56, out[2] < 2^56,
  398. // out[3] <= 2^56 + 2^16 (due to final carry),
  399. // so out < 2*p
  400. out[3] = output[3];
  401. }
  402. // Reduce to unique minimal representation.
  403. // Requires 0 <= in < 2*p (always call p224_felem_reduce first)
  404. static void p224_felem_contract(p224_felem out, const p224_felem in) {
  405. static const int64_t two56 = ((p224_limb)1) << 56;
  406. // 0 <= in < 2*p, p = 2^224 - 2^96 + 1
  407. // if in > p , reduce in = in - 2^224 + 2^96 - 1
  408. int64_t tmp[4], a;
  409. tmp[0] = in[0];
  410. tmp[1] = in[1];
  411. tmp[2] = in[2];
  412. tmp[3] = in[3];
  413. // Case 1: a = 1 iff in >= 2^224
  414. a = (in[3] >> 56);
  415. tmp[0] -= a;
  416. tmp[1] += a << 40;
  417. tmp[3] &= 0x00ffffffffffffff;
  418. // Case 2: a = 0 iff p <= in < 2^224, i.e., the high 128 bits are all 1 and
  419. // the lower part is non-zero
  420. a = ((in[3] & in[2] & (in[1] | 0x000000ffffffffff)) + 1) |
  421. (((int64_t)(in[0] + (in[1] & 0x000000ffffffffff)) - 1) >> 63);
  422. a &= 0x00ffffffffffffff;
  423. // turn a into an all-one mask (if a = 0) or an all-zero mask
  424. a = (a - 1) >> 63;
  425. // subtract 2^224 - 2^96 + 1 if a is all-one
  426. tmp[3] &= a ^ 0xffffffffffffffff;
  427. tmp[2] &= a ^ 0xffffffffffffffff;
  428. tmp[1] &= (a ^ 0xffffffffffffffff) | 0x000000ffffffffff;
  429. tmp[0] -= 1 & a;
  430. // eliminate negative coefficients: if tmp[0] is negative, tmp[1] must
  431. // be non-zero, so we only need one step
  432. a = tmp[0] >> 63;
  433. tmp[0] += two56 & a;
  434. tmp[1] -= 1 & a;
  435. // carry 1 -> 2 -> 3
  436. tmp[2] += tmp[1] >> 56;
  437. tmp[1] &= 0x00ffffffffffffff;
  438. tmp[3] += tmp[2] >> 56;
  439. tmp[2] &= 0x00ffffffffffffff;
  440. // Now 0 <= out < p
  441. out[0] = tmp[0];
  442. out[1] = tmp[1];
  443. out[2] = tmp[2];
  444. out[3] = tmp[3];
  445. }
  446. // Get negative value: out = -in
  447. // Requires in[i] < 2^63,
  448. // ensures out[0] < 2^56, out[1] < 2^56, out[2] < 2^56, out[3] <= 2^56 + 2^16
  449. static void p224_felem_neg(p224_felem out, const p224_felem in) {
  450. p224_widefelem tmp = {0};
  451. p224_felem_diff_128_64(tmp, in);
  452. p224_felem_reduce(out, tmp);
  453. }
  454. // Zero-check: returns 1 if input is 0, and 0 otherwise. We know that field
  455. // elements are reduced to in < 2^225, so we only need to check three cases: 0,
  456. // 2^224 - 2^96 + 1, and 2^225 - 2^97 + 2
  457. static p224_limb p224_felem_is_zero(const p224_felem in) {
  458. p224_limb zero = in[0] | in[1] | in[2] | in[3];
  459. zero = (((int64_t)(zero)-1) >> 63) & 1;
  460. p224_limb two224m96p1 = (in[0] ^ 1) | (in[1] ^ 0x00ffff0000000000) |
  461. (in[2] ^ 0x00ffffffffffffff) |
  462. (in[3] ^ 0x00ffffffffffffff);
  463. two224m96p1 = (((int64_t)(two224m96p1)-1) >> 63) & 1;
  464. p224_limb two225m97p2 = (in[0] ^ 2) | (in[1] ^ 0x00fffe0000000000) |
  465. (in[2] ^ 0x00ffffffffffffff) |
  466. (in[3] ^ 0x01ffffffffffffff);
  467. two225m97p2 = (((int64_t)(two225m97p2)-1) >> 63) & 1;
  468. return (zero | two224m96p1 | two225m97p2);
  469. }
  470. // Invert a field element
  471. // Computation chain copied from djb's code
  472. static void p224_felem_inv(p224_felem out, const p224_felem in) {
  473. p224_felem ftmp, ftmp2, ftmp3, ftmp4;
  474. p224_widefelem tmp;
  475. p224_felem_square(tmp, in);
  476. p224_felem_reduce(ftmp, tmp); // 2
  477. p224_felem_mul(tmp, in, ftmp);
  478. p224_felem_reduce(ftmp, tmp); // 2^2 - 1
  479. p224_felem_square(tmp, ftmp);
  480. p224_felem_reduce(ftmp, tmp); // 2^3 - 2
  481. p224_felem_mul(tmp, in, ftmp);
  482. p224_felem_reduce(ftmp, tmp); // 2^3 - 1
  483. p224_felem_square(tmp, ftmp);
  484. p224_felem_reduce(ftmp2, tmp); // 2^4 - 2
  485. p224_felem_square(tmp, ftmp2);
  486. p224_felem_reduce(ftmp2, tmp); // 2^5 - 4
  487. p224_felem_square(tmp, ftmp2);
  488. p224_felem_reduce(ftmp2, tmp); // 2^6 - 8
  489. p224_felem_mul(tmp, ftmp2, ftmp);
  490. p224_felem_reduce(ftmp, tmp); // 2^6 - 1
  491. p224_felem_square(tmp, ftmp);
  492. p224_felem_reduce(ftmp2, tmp); // 2^7 - 2
  493. for (size_t i = 0; i < 5; ++i) { // 2^12 - 2^6
  494. p224_felem_square(tmp, ftmp2);
  495. p224_felem_reduce(ftmp2, tmp);
  496. }
  497. p224_felem_mul(tmp, ftmp2, ftmp);
  498. p224_felem_reduce(ftmp2, tmp); // 2^12 - 1
  499. p224_felem_square(tmp, ftmp2);
  500. p224_felem_reduce(ftmp3, tmp); // 2^13 - 2
  501. for (size_t i = 0; i < 11; ++i) { // 2^24 - 2^12
  502. p224_felem_square(tmp, ftmp3);
  503. p224_felem_reduce(ftmp3, tmp);
  504. }
  505. p224_felem_mul(tmp, ftmp3, ftmp2);
  506. p224_felem_reduce(ftmp2, tmp); // 2^24 - 1
  507. p224_felem_square(tmp, ftmp2);
  508. p224_felem_reduce(ftmp3, tmp); // 2^25 - 2
  509. for (size_t i = 0; i < 23; ++i) { // 2^48 - 2^24
  510. p224_felem_square(tmp, ftmp3);
  511. p224_felem_reduce(ftmp3, tmp);
  512. }
  513. p224_felem_mul(tmp, ftmp3, ftmp2);
  514. p224_felem_reduce(ftmp3, tmp); // 2^48 - 1
  515. p224_felem_square(tmp, ftmp3);
  516. p224_felem_reduce(ftmp4, tmp); // 2^49 - 2
  517. for (size_t i = 0; i < 47; ++i) { // 2^96 - 2^48
  518. p224_felem_square(tmp, ftmp4);
  519. p224_felem_reduce(ftmp4, tmp);
  520. }
  521. p224_felem_mul(tmp, ftmp3, ftmp4);
  522. p224_felem_reduce(ftmp3, tmp); // 2^96 - 1
  523. p224_felem_square(tmp, ftmp3);
  524. p224_felem_reduce(ftmp4, tmp); // 2^97 - 2
  525. for (size_t i = 0; i < 23; ++i) { // 2^120 - 2^24
  526. p224_felem_square(tmp, ftmp4);
  527. p224_felem_reduce(ftmp4, tmp);
  528. }
  529. p224_felem_mul(tmp, ftmp2, ftmp4);
  530. p224_felem_reduce(ftmp2, tmp); // 2^120 - 1
  531. for (size_t i = 0; i < 6; ++i) { // 2^126 - 2^6
  532. p224_felem_square(tmp, ftmp2);
  533. p224_felem_reduce(ftmp2, tmp);
  534. }
  535. p224_felem_mul(tmp, ftmp2, ftmp);
  536. p224_felem_reduce(ftmp, tmp); // 2^126 - 1
  537. p224_felem_square(tmp, ftmp);
  538. p224_felem_reduce(ftmp, tmp); // 2^127 - 2
  539. p224_felem_mul(tmp, ftmp, in);
  540. p224_felem_reduce(ftmp, tmp); // 2^127 - 1
  541. for (size_t i = 0; i < 97; ++i) { // 2^224 - 2^97
  542. p224_felem_square(tmp, ftmp);
  543. p224_felem_reduce(ftmp, tmp);
  544. }
  545. p224_felem_mul(tmp, ftmp, ftmp3);
  546. p224_felem_reduce(out, tmp); // 2^224 - 2^96 - 1
  547. }
  548. // Copy in constant time:
  549. // if icopy == 1, copy in to out,
  550. // if icopy == 0, copy out to itself.
  551. static void p224_copy_conditional(p224_felem out, const p224_felem in,
  552. p224_limb icopy) {
  553. // icopy is a (64-bit) 0 or 1, so copy is either all-zero or all-one
  554. const p224_limb copy = -icopy;
  555. for (size_t i = 0; i < 4; ++i) {
  556. const p224_limb tmp = copy & (in[i] ^ out[i]);
  557. out[i] ^= tmp;
  558. }
  559. }
  560. // ELLIPTIC CURVE POINT OPERATIONS
  561. //
  562. // Points are represented in Jacobian projective coordinates:
  563. // (X, Y, Z) corresponds to the affine point (X/Z^2, Y/Z^3),
  564. // or to the point at infinity if Z == 0.
  565. // Double an elliptic curve point:
  566. // (X', Y', Z') = 2 * (X, Y, Z), where
  567. // X' = (3 * (X - Z^2) * (X + Z^2))^2 - 8 * X * Y^2
  568. // Y' = 3 * (X - Z^2) * (X + Z^2) * (4 * X * Y^2 - X') - 8 * Y^2
  569. // Z' = (Y + Z)^2 - Y^2 - Z^2 = 2 * Y * Z
  570. // Outputs can equal corresponding inputs, i.e., x_out == x_in is allowed,
  571. // while x_out == y_in is not (maybe this works, but it's not tested).
  572. static void p224_point_double(p224_felem x_out, p224_felem y_out,
  573. p224_felem z_out, const p224_felem x_in,
  574. const p224_felem y_in, const p224_felem z_in) {
  575. p224_widefelem tmp, tmp2;
  576. p224_felem delta, gamma, beta, alpha, ftmp, ftmp2;
  577. p224_felem_assign(ftmp, x_in);
  578. p224_felem_assign(ftmp2, x_in);
  579. // delta = z^2
  580. p224_felem_square(tmp, z_in);
  581. p224_felem_reduce(delta, tmp);
  582. // gamma = y^2
  583. p224_felem_square(tmp, y_in);
  584. p224_felem_reduce(gamma, tmp);
  585. // beta = x*gamma
  586. p224_felem_mul(tmp, x_in, gamma);
  587. p224_felem_reduce(beta, tmp);
  588. // alpha = 3*(x-delta)*(x+delta)
  589. p224_felem_diff(ftmp, delta);
  590. // ftmp[i] < 2^57 + 2^58 + 2 < 2^59
  591. p224_felem_sum(ftmp2, delta);
  592. // ftmp2[i] < 2^57 + 2^57 = 2^58
  593. p224_felem_scalar(ftmp2, 3);
  594. // ftmp2[i] < 3 * 2^58 < 2^60
  595. p224_felem_mul(tmp, ftmp, ftmp2);
  596. // tmp[i] < 2^60 * 2^59 * 4 = 2^121
  597. p224_felem_reduce(alpha, tmp);
  598. // x' = alpha^2 - 8*beta
  599. p224_felem_square(tmp, alpha);
  600. // tmp[i] < 4 * 2^57 * 2^57 = 2^116
  601. p224_felem_assign(ftmp, beta);
  602. p224_felem_scalar(ftmp, 8);
  603. // ftmp[i] < 8 * 2^57 = 2^60
  604. p224_felem_diff_128_64(tmp, ftmp);
  605. // tmp[i] < 2^116 + 2^64 + 8 < 2^117
  606. p224_felem_reduce(x_out, tmp);
  607. // z' = (y + z)^2 - gamma - delta
  608. p224_felem_sum(delta, gamma);
  609. // delta[i] < 2^57 + 2^57 = 2^58
  610. p224_felem_assign(ftmp, y_in);
  611. p224_felem_sum(ftmp, z_in);
  612. // ftmp[i] < 2^57 + 2^57 = 2^58
  613. p224_felem_square(tmp, ftmp);
  614. // tmp[i] < 4 * 2^58 * 2^58 = 2^118
  615. p224_felem_diff_128_64(tmp, delta);
  616. // tmp[i] < 2^118 + 2^64 + 8 < 2^119
  617. p224_felem_reduce(z_out, tmp);
  618. // y' = alpha*(4*beta - x') - 8*gamma^2
  619. p224_felem_scalar(beta, 4);
  620. // beta[i] < 4 * 2^57 = 2^59
  621. p224_felem_diff(beta, x_out);
  622. // beta[i] < 2^59 + 2^58 + 2 < 2^60
  623. p224_felem_mul(tmp, alpha, beta);
  624. // tmp[i] < 4 * 2^57 * 2^60 = 2^119
  625. p224_felem_square(tmp2, gamma);
  626. // tmp2[i] < 4 * 2^57 * 2^57 = 2^116
  627. p224_widefelem_scalar(tmp2, 8);
  628. // tmp2[i] < 8 * 2^116 = 2^119
  629. p224_widefelem_diff(tmp, tmp2);
  630. // tmp[i] < 2^119 + 2^120 < 2^121
  631. p224_felem_reduce(y_out, tmp);
  632. }
  633. // Add two elliptic curve points:
  634. // (X_1, Y_1, Z_1) + (X_2, Y_2, Z_2) = (X_3, Y_3, Z_3), where
  635. // X_3 = (Z_1^3 * Y_2 - Z_2^3 * Y_1)^2 - (Z_1^2 * X_2 - Z_2^2 * X_1)^3 -
  636. // 2 * Z_2^2 * X_1 * (Z_1^2 * X_2 - Z_2^2 * X_1)^2
  637. // Y_3 = (Z_1^3 * Y_2 - Z_2^3 * Y_1) * (Z_2^2 * X_1 * (Z_1^2 * X_2 - Z_2^2 *
  638. // X_1)^2 - X_3) -
  639. // Z_2^3 * Y_1 * (Z_1^2 * X_2 - Z_2^2 * X_1)^3
  640. // Z_3 = (Z_1^2 * X_2 - Z_2^2 * X_1) * (Z_1 * Z_2)
  641. //
  642. // This runs faster if 'mixed' is set, which requires Z_2 = 1 or Z_2 = 0.
  643. // This function is not entirely constant-time: it includes a branch for
  644. // checking whether the two input points are equal, (while not equal to the
  645. // point at infinity). This case never happens during single point
  646. // multiplication, so there is no timing leak for ECDH or ECDSA signing.
  647. static void p224_point_add(p224_felem x3, p224_felem y3, p224_felem z3,
  648. const p224_felem x1, const p224_felem y1,
  649. const p224_felem z1, const int mixed,
  650. const p224_felem x2, const p224_felem y2,
  651. const p224_felem z2) {
  652. p224_felem ftmp, ftmp2, ftmp3, ftmp4, ftmp5, x_out, y_out, z_out;
  653. p224_widefelem tmp, tmp2;
  654. p224_limb z1_is_zero, z2_is_zero, x_equal, y_equal;
  655. if (!mixed) {
  656. // ftmp2 = z2^2
  657. p224_felem_square(tmp, z2);
  658. p224_felem_reduce(ftmp2, tmp);
  659. // ftmp4 = z2^3
  660. p224_felem_mul(tmp, ftmp2, z2);
  661. p224_felem_reduce(ftmp4, tmp);
  662. // ftmp4 = z2^3*y1
  663. p224_felem_mul(tmp2, ftmp4, y1);
  664. p224_felem_reduce(ftmp4, tmp2);
  665. // ftmp2 = z2^2*x1
  666. p224_felem_mul(tmp2, ftmp2, x1);
  667. p224_felem_reduce(ftmp2, tmp2);
  668. } else {
  669. // We'll assume z2 = 1 (special case z2 = 0 is handled later)
  670. // ftmp4 = z2^3*y1
  671. p224_felem_assign(ftmp4, y1);
  672. // ftmp2 = z2^2*x1
  673. p224_felem_assign(ftmp2, x1);
  674. }
  675. // ftmp = z1^2
  676. p224_felem_square(tmp, z1);
  677. p224_felem_reduce(ftmp, tmp);
  678. // ftmp3 = z1^3
  679. p224_felem_mul(tmp, ftmp, z1);
  680. p224_felem_reduce(ftmp3, tmp);
  681. // tmp = z1^3*y2
  682. p224_felem_mul(tmp, ftmp3, y2);
  683. // tmp[i] < 4 * 2^57 * 2^57 = 2^116
  684. // ftmp3 = z1^3*y2 - z2^3*y1
  685. p224_felem_diff_128_64(tmp, ftmp4);
  686. // tmp[i] < 2^116 + 2^64 + 8 < 2^117
  687. p224_felem_reduce(ftmp3, tmp);
  688. // tmp = z1^2*x2
  689. p224_felem_mul(tmp, ftmp, x2);
  690. // tmp[i] < 4 * 2^57 * 2^57 = 2^116
  691. // ftmp = z1^2*x2 - z2^2*x1
  692. p224_felem_diff_128_64(tmp, ftmp2);
  693. // tmp[i] < 2^116 + 2^64 + 8 < 2^117
  694. p224_felem_reduce(ftmp, tmp);
  695. // the formulae are incorrect if the points are equal
  696. // so we check for this and do doubling if this happens
  697. x_equal = p224_felem_is_zero(ftmp);
  698. y_equal = p224_felem_is_zero(ftmp3);
  699. z1_is_zero = p224_felem_is_zero(z1);
  700. z2_is_zero = p224_felem_is_zero(z2);
  701. // In affine coordinates, (X_1, Y_1) == (X_2, Y_2)
  702. if (x_equal && y_equal && !z1_is_zero && !z2_is_zero) {
  703. p224_point_double(x3, y3, z3, x1, y1, z1);
  704. return;
  705. }
  706. // ftmp5 = z1*z2
  707. if (!mixed) {
  708. p224_felem_mul(tmp, z1, z2);
  709. p224_felem_reduce(ftmp5, tmp);
  710. } else {
  711. // special case z2 = 0 is handled later
  712. p224_felem_assign(ftmp5, z1);
  713. }
  714. // z_out = (z1^2*x2 - z2^2*x1)*(z1*z2)
  715. p224_felem_mul(tmp, ftmp, ftmp5);
  716. p224_felem_reduce(z_out, tmp);
  717. // ftmp = (z1^2*x2 - z2^2*x1)^2
  718. p224_felem_assign(ftmp5, ftmp);
  719. p224_felem_square(tmp, ftmp);
  720. p224_felem_reduce(ftmp, tmp);
  721. // ftmp5 = (z1^2*x2 - z2^2*x1)^3
  722. p224_felem_mul(tmp, ftmp, ftmp5);
  723. p224_felem_reduce(ftmp5, tmp);
  724. // ftmp2 = z2^2*x1*(z1^2*x2 - z2^2*x1)^2
  725. p224_felem_mul(tmp, ftmp2, ftmp);
  726. p224_felem_reduce(ftmp2, tmp);
  727. // tmp = z2^3*y1*(z1^2*x2 - z2^2*x1)^3
  728. p224_felem_mul(tmp, ftmp4, ftmp5);
  729. // tmp[i] < 4 * 2^57 * 2^57 = 2^116
  730. // tmp2 = (z1^3*y2 - z2^3*y1)^2
  731. p224_felem_square(tmp2, ftmp3);
  732. // tmp2[i] < 4 * 2^57 * 2^57 < 2^116
  733. // tmp2 = (z1^3*y2 - z2^3*y1)^2 - (z1^2*x2 - z2^2*x1)^3
  734. p224_felem_diff_128_64(tmp2, ftmp5);
  735. // tmp2[i] < 2^116 + 2^64 + 8 < 2^117
  736. // ftmp5 = 2*z2^2*x1*(z1^2*x2 - z2^2*x1)^2
  737. p224_felem_assign(ftmp5, ftmp2);
  738. p224_felem_scalar(ftmp5, 2);
  739. // ftmp5[i] < 2 * 2^57 = 2^58
  740. /* x_out = (z1^3*y2 - z2^3*y1)^2 - (z1^2*x2 - z2^2*x1)^3 -
  741. 2*z2^2*x1*(z1^2*x2 - z2^2*x1)^2 */
  742. p224_felem_diff_128_64(tmp2, ftmp5);
  743. // tmp2[i] < 2^117 + 2^64 + 8 < 2^118
  744. p224_felem_reduce(x_out, tmp2);
  745. // ftmp2 = z2^2*x1*(z1^2*x2 - z2^2*x1)^2 - x_out
  746. p224_felem_diff(ftmp2, x_out);
  747. // ftmp2[i] < 2^57 + 2^58 + 2 < 2^59
  748. // tmp2 = (z1^3*y2 - z2^3*y1)*(z2^2*x1*(z1^2*x2 - z2^2*x1)^2 - x_out)
  749. p224_felem_mul(tmp2, ftmp3, ftmp2);
  750. // tmp2[i] < 4 * 2^57 * 2^59 = 2^118
  751. /* y_out = (z1^3*y2 - z2^3*y1)*(z2^2*x1*(z1^2*x2 - z2^2*x1)^2 - x_out) -
  752. z2^3*y1*(z1^2*x2 - z2^2*x1)^3 */
  753. p224_widefelem_diff(tmp2, tmp);
  754. // tmp2[i] < 2^118 + 2^120 < 2^121
  755. p224_felem_reduce(y_out, tmp2);
  756. // the result (x_out, y_out, z_out) is incorrect if one of the inputs is
  757. // the point at infinity, so we need to check for this separately
  758. // if point 1 is at infinity, copy point 2 to output, and vice versa
  759. p224_copy_conditional(x_out, x2, z1_is_zero);
  760. p224_copy_conditional(x_out, x1, z2_is_zero);
  761. p224_copy_conditional(y_out, y2, z1_is_zero);
  762. p224_copy_conditional(y_out, y1, z2_is_zero);
  763. p224_copy_conditional(z_out, z2, z1_is_zero);
  764. p224_copy_conditional(z_out, z1, z2_is_zero);
  765. p224_felem_assign(x3, x_out);
  766. p224_felem_assign(y3, y_out);
  767. p224_felem_assign(z3, z_out);
  768. }
  769. // p224_select_point selects the |idx|th point from a precomputation table and
  770. // copies it to out.
  771. static void p224_select_point(const uint64_t idx, size_t size,
  772. const p224_felem pre_comp[/*size*/][3],
  773. p224_felem out[3]) {
  774. p224_limb *outlimbs = &out[0][0];
  775. OPENSSL_memset(outlimbs, 0, 3 * sizeof(p224_felem));
  776. for (size_t i = 0; i < size; i++) {
  777. const p224_limb *inlimbs = &pre_comp[i][0][0];
  778. uint64_t mask = i ^ idx;
  779. mask |= mask >> 4;
  780. mask |= mask >> 2;
  781. mask |= mask >> 1;
  782. mask &= 1;
  783. mask--;
  784. for (size_t j = 0; j < 4 * 3; j++) {
  785. outlimbs[j] |= inlimbs[j] & mask;
  786. }
  787. }
  788. }
  789. // p224_get_bit returns the |i|th bit in |in|
  790. static char p224_get_bit(const p224_felem_bytearray in, size_t i) {
  791. if (i >= 224) {
  792. return 0;
  793. }
  794. return (in[i >> 3] >> (i & 7)) & 1;
  795. }
  796. // Interleaved point multiplication using precomputed point multiples:
  797. // The small point multiples 0*P, 1*P, ..., 16*P are in p_pre_comp, the scalars
  798. // in p_scalar, if non-NULL. If g_scalar is non-NULL, we also add this multiple
  799. // of the generator, using certain (large) precomputed multiples in
  800. // g_p224_pre_comp. Output point (X, Y, Z) is stored in x_out, y_out, z_out
  801. static void p224_batch_mul(p224_felem x_out, p224_felem y_out, p224_felem z_out,
  802. const uint8_t *p_scalar, const uint8_t *g_scalar,
  803. const p224_felem p_pre_comp[17][3]) {
  804. p224_felem nq[3], tmp[4];
  805. uint64_t bits;
  806. uint8_t sign, digit;
  807. // set nq to the point at infinity
  808. OPENSSL_memset(nq, 0, 3 * sizeof(p224_felem));
  809. // Loop over both scalars msb-to-lsb, interleaving additions of multiples of
  810. // the generator (two in each of the last 28 rounds) and additions of p (every
  811. // 5th round).
  812. int skip = 1; // save two point operations in the first round
  813. size_t i = p_scalar != NULL ? 220 : 27;
  814. for (;;) {
  815. // double
  816. if (!skip) {
  817. p224_point_double(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2]);
  818. }
  819. // add multiples of the generator
  820. if (g_scalar != NULL && i <= 27) {
  821. // first, look 28 bits upwards
  822. bits = p224_get_bit(g_scalar, i + 196) << 3;
  823. bits |= p224_get_bit(g_scalar, i + 140) << 2;
  824. bits |= p224_get_bit(g_scalar, i + 84) << 1;
  825. bits |= p224_get_bit(g_scalar, i + 28);
  826. // select the point to add, in constant time
  827. p224_select_point(bits, 16, g_p224_pre_comp[1], tmp);
  828. if (!skip) {
  829. p224_point_add(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2], 1 /* mixed */,
  830. tmp[0], tmp[1], tmp[2]);
  831. } else {
  832. OPENSSL_memcpy(nq, tmp, 3 * sizeof(p224_felem));
  833. skip = 0;
  834. }
  835. // second, look at the current position
  836. bits = p224_get_bit(g_scalar, i + 168) << 3;
  837. bits |= p224_get_bit(g_scalar, i + 112) << 2;
  838. bits |= p224_get_bit(g_scalar, i + 56) << 1;
  839. bits |= p224_get_bit(g_scalar, i);
  840. // select the point to add, in constant time
  841. p224_select_point(bits, 16, g_p224_pre_comp[0], tmp);
  842. p224_point_add(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2], 1 /* mixed */,
  843. tmp[0], tmp[1], tmp[2]);
  844. }
  845. // do other additions every 5 doublings
  846. if (p_scalar != NULL && i % 5 == 0) {
  847. bits = p224_get_bit(p_scalar, i + 4) << 5;
  848. bits |= p224_get_bit(p_scalar, i + 3) << 4;
  849. bits |= p224_get_bit(p_scalar, i + 2) << 3;
  850. bits |= p224_get_bit(p_scalar, i + 1) << 2;
  851. bits |= p224_get_bit(p_scalar, i) << 1;
  852. bits |= p224_get_bit(p_scalar, i - 1);
  853. ec_GFp_nistp_recode_scalar_bits(&sign, &digit, bits);
  854. // select the point to add or subtract
  855. p224_select_point(digit, 17, p_pre_comp, tmp);
  856. p224_felem_neg(tmp[3], tmp[1]); // (X, -Y, Z) is the negative point
  857. p224_copy_conditional(tmp[1], tmp[3], sign);
  858. if (!skip) {
  859. p224_point_add(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2], 0 /* mixed */,
  860. tmp[0], tmp[1], tmp[2]);
  861. } else {
  862. OPENSSL_memcpy(nq, tmp, 3 * sizeof(p224_felem));
  863. skip = 0;
  864. }
  865. }
  866. if (i == 0) {
  867. break;
  868. }
  869. --i;
  870. }
  871. p224_felem_assign(x_out, nq[0]);
  872. p224_felem_assign(y_out, nq[1]);
  873. p224_felem_assign(z_out, nq[2]);
  874. }
  875. // Takes the Jacobian coordinates (X, Y, Z) of a point and returns
  876. // (X', Y') = (X/Z^2, Y/Z^3)
  877. static int ec_GFp_nistp224_point_get_affine_coordinates(const EC_GROUP *group,
  878. const EC_POINT *point,
  879. BIGNUM *x, BIGNUM *y,
  880. BN_CTX *ctx) {
  881. p224_felem z1, z2, x_in, y_in, x_out, y_out;
  882. p224_widefelem tmp;
  883. if (EC_POINT_is_at_infinity(group, point)) {
  884. OPENSSL_PUT_ERROR(EC, EC_R_POINT_AT_INFINITY);
  885. return 0;
  886. }
  887. if (!p224_BN_to_felem(x_in, &point->X) ||
  888. !p224_BN_to_felem(y_in, &point->Y) ||
  889. !p224_BN_to_felem(z1, &point->Z)) {
  890. return 0;
  891. }
  892. p224_felem_inv(z2, z1);
  893. p224_felem_square(tmp, z2);
  894. p224_felem_reduce(z1, tmp);
  895. if (x != NULL) {
  896. p224_felem_mul(tmp, x_in, z1);
  897. p224_felem_reduce(x_in, tmp);
  898. p224_felem_contract(x_out, x_in);
  899. if (!p224_felem_to_BN(x, x_out)) {
  900. OPENSSL_PUT_ERROR(EC, ERR_R_BN_LIB);
  901. return 0;
  902. }
  903. }
  904. if (y != NULL) {
  905. p224_felem_mul(tmp, z1, z2);
  906. p224_felem_reduce(z1, tmp);
  907. p224_felem_mul(tmp, y_in, z1);
  908. p224_felem_reduce(y_in, tmp);
  909. p224_felem_contract(y_out, y_in);
  910. if (!p224_felem_to_BN(y, y_out)) {
  911. OPENSSL_PUT_ERROR(EC, ERR_R_BN_LIB);
  912. return 0;
  913. }
  914. }
  915. return 1;
  916. }
  917. static int ec_GFp_nistp224_points_mul(const EC_GROUP *group, EC_POINT *r,
  918. const EC_SCALAR *g_scalar,
  919. const EC_POINT *p,
  920. const EC_SCALAR *p_scalar, BN_CTX *ctx) {
  921. p224_felem p_pre_comp[17][3];
  922. p224_felem x_in, y_in, z_in, x_out, y_out, z_out;
  923. if (p != NULL && p_scalar != NULL) {
  924. // We treat NULL scalars as 0, and NULL points as points at infinity, i.e.,
  925. // they contribute nothing to the linear combination.
  926. OPENSSL_memset(&p_pre_comp, 0, sizeof(p_pre_comp));
  927. // precompute multiples
  928. if (!p224_BN_to_felem(x_out, &p->X) ||
  929. !p224_BN_to_felem(y_out, &p->Y) ||
  930. !p224_BN_to_felem(z_out, &p->Z)) {
  931. return 0;
  932. }
  933. p224_felem_assign(p_pre_comp[1][0], x_out);
  934. p224_felem_assign(p_pre_comp[1][1], y_out);
  935. p224_felem_assign(p_pre_comp[1][2], z_out);
  936. for (size_t j = 2; j <= 16; ++j) {
  937. if (j & 1) {
  938. p224_point_add(p_pre_comp[j][0], p_pre_comp[j][1], p_pre_comp[j][2],
  939. p_pre_comp[1][0], p_pre_comp[1][1], p_pre_comp[1][2],
  940. 0, p_pre_comp[j - 1][0], p_pre_comp[j - 1][1],
  941. p_pre_comp[j - 1][2]);
  942. } else {
  943. p224_point_double(p_pre_comp[j][0], p_pre_comp[j][1],
  944. p_pre_comp[j][2], p_pre_comp[j / 2][0],
  945. p_pre_comp[j / 2][1], p_pre_comp[j / 2][2]);
  946. }
  947. }
  948. }
  949. p224_batch_mul(x_out, y_out, z_out,
  950. (p != NULL && p_scalar != NULL) ? p_scalar->bytes : NULL,
  951. g_scalar != NULL ? g_scalar->bytes : NULL,
  952. (const p224_felem(*)[3])p_pre_comp);
  953. // reduce the output to its unique minimal representation
  954. p224_felem_contract(x_in, x_out);
  955. p224_felem_contract(y_in, y_out);
  956. p224_felem_contract(z_in, z_out);
  957. if (!p224_felem_to_BN(&r->X, x_in) ||
  958. !p224_felem_to_BN(&r->Y, y_in) ||
  959. !p224_felem_to_BN(&r->Z, z_in)) {
  960. OPENSSL_PUT_ERROR(EC, ERR_R_BN_LIB);
  961. return 0;
  962. }
  963. return 1;
  964. }
  965. DEFINE_METHOD_FUNCTION(EC_METHOD, EC_GFp_nistp224_method) {
  966. out->group_init = ec_GFp_simple_group_init;
  967. out->group_finish = ec_GFp_simple_group_finish;
  968. out->group_set_curve = ec_GFp_simple_group_set_curve;
  969. out->point_get_affine_coordinates =
  970. ec_GFp_nistp224_point_get_affine_coordinates;
  971. out->mul = ec_GFp_nistp224_points_mul;
  972. out->mul_public = ec_GFp_nistp224_points_mul;
  973. out->field_mul = ec_GFp_simple_field_mul;
  974. out->field_sqr = ec_GFp_simple_field_sqr;
  975. out->field_encode = NULL;
  976. out->field_decode = NULL;
  977. };
  978. #endif // BORINGSSL_HAS_UINT128 && !SMALL