ec_montgomery.c 8.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270
  1. /* Originally written by Bodo Moeller and Nils Larsch for the OpenSSL project.
  2. * ====================================================================
  3. * Copyright (c) 1998-2005 The OpenSSL Project. All rights reserved.
  4. *
  5. * Redistribution and use in source and binary forms, with or without
  6. * modification, are permitted provided that the following conditions
  7. * are met:
  8. *
  9. * 1. Redistributions of source code must retain the above copyright
  10. * notice, this list of conditions and the following disclaimer.
  11. *
  12. * 2. Redistributions in binary form must reproduce the above copyright
  13. * notice, this list of conditions and the following disclaimer in
  14. * the documentation and/or other materials provided with the
  15. * distribution.
  16. *
  17. * 3. All advertising materials mentioning features or use of this
  18. * software must display the following acknowledgment:
  19. * "This product includes software developed by the OpenSSL Project
  20. * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
  21. *
  22. * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
  23. * endorse or promote products derived from this software without
  24. * prior written permission. For written permission, please contact
  25. * openssl-core@openssl.org.
  26. *
  27. * 5. Products derived from this software may not be called "OpenSSL"
  28. * nor may "OpenSSL" appear in their names without prior written
  29. * permission of the OpenSSL Project.
  30. *
  31. * 6. Redistributions of any form whatsoever must retain the following
  32. * acknowledgment:
  33. * "This product includes software developed by the OpenSSL Project
  34. * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
  35. *
  36. * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
  37. * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  38. * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
  39. * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
  40. * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  41. * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
  42. * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
  43. * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
  44. * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
  45. * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
  46. * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
  47. * OF THE POSSIBILITY OF SUCH DAMAGE.
  48. * ====================================================================
  49. *
  50. * This product includes cryptographic software written by Eric Young
  51. * (eay@cryptsoft.com). This product includes software written by Tim
  52. * Hudson (tjh@cryptsoft.com).
  53. *
  54. */
  55. /* ====================================================================
  56. * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
  57. *
  58. * Portions of the attached software ("Contribution") are developed by
  59. * SUN MICROSYSTEMS, INC., and are contributed to the OpenSSL project.
  60. *
  61. * The Contribution is licensed pursuant to the OpenSSL open source
  62. * license provided above.
  63. *
  64. * The elliptic curve binary polynomial software is originally written by
  65. * Sheueling Chang Shantz and Douglas Stebila of Sun Microsystems
  66. * Laboratories. */
  67. #include <openssl/ec.h>
  68. #include <openssl/bn.h>
  69. #include <openssl/err.h>
  70. #include <openssl/mem.h>
  71. #include "../bn/internal.h"
  72. #include "../delocate.h"
  73. #include "internal.h"
  74. int ec_GFp_mont_group_init(EC_GROUP *group) {
  75. int ok;
  76. ok = ec_GFp_simple_group_init(group);
  77. group->mont = NULL;
  78. return ok;
  79. }
  80. void ec_GFp_mont_group_finish(EC_GROUP *group) {
  81. BN_MONT_CTX_free(group->mont);
  82. group->mont = NULL;
  83. ec_GFp_simple_group_finish(group);
  84. }
  85. int ec_GFp_mont_group_set_curve(EC_GROUP *group, const BIGNUM *p,
  86. const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx) {
  87. BN_CTX *new_ctx = NULL;
  88. int ret = 0;
  89. BN_MONT_CTX_free(group->mont);
  90. group->mont = NULL;
  91. if (ctx == NULL) {
  92. ctx = new_ctx = BN_CTX_new();
  93. if (ctx == NULL) {
  94. return 0;
  95. }
  96. }
  97. group->mont = BN_MONT_CTX_new_for_modulus(p, ctx);
  98. if (group->mont == NULL) {
  99. OPENSSL_PUT_ERROR(EC, ERR_R_BN_LIB);
  100. goto err;
  101. }
  102. ret = ec_GFp_simple_group_set_curve(group, p, a, b, ctx);
  103. if (!ret) {
  104. BN_MONT_CTX_free(group->mont);
  105. group->mont = NULL;
  106. }
  107. err:
  108. BN_CTX_free(new_ctx);
  109. return ret;
  110. }
  111. int ec_GFp_mont_field_mul(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a,
  112. const BIGNUM *b, BN_CTX *ctx) {
  113. if (group->mont == NULL) {
  114. OPENSSL_PUT_ERROR(EC, EC_R_NOT_INITIALIZED);
  115. return 0;
  116. }
  117. return BN_mod_mul_montgomery(r, a, b, group->mont, ctx);
  118. }
  119. int ec_GFp_mont_field_sqr(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a,
  120. BN_CTX *ctx) {
  121. if (group->mont == NULL) {
  122. OPENSSL_PUT_ERROR(EC, EC_R_NOT_INITIALIZED);
  123. return 0;
  124. }
  125. return BN_mod_mul_montgomery(r, a, a, group->mont, ctx);
  126. }
  127. int ec_GFp_mont_field_encode(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a,
  128. BN_CTX *ctx) {
  129. if (group->mont == NULL) {
  130. OPENSSL_PUT_ERROR(EC, EC_R_NOT_INITIALIZED);
  131. return 0;
  132. }
  133. return BN_to_montgomery(r, a, group->mont, ctx);
  134. }
  135. int ec_GFp_mont_field_decode(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a,
  136. BN_CTX *ctx) {
  137. if (group->mont == NULL) {
  138. OPENSSL_PUT_ERROR(EC, EC_R_NOT_INITIALIZED);
  139. return 0;
  140. }
  141. return BN_from_montgomery(r, a, group->mont, ctx);
  142. }
  143. static int ec_GFp_mont_point_get_affine_coordinates(const EC_GROUP *group,
  144. const EC_POINT *point,
  145. BIGNUM *x, BIGNUM *y,
  146. BN_CTX *ctx) {
  147. if (EC_POINT_is_at_infinity(group, point)) {
  148. OPENSSL_PUT_ERROR(EC, EC_R_POINT_AT_INFINITY);
  149. return 0;
  150. }
  151. BN_CTX *new_ctx = NULL;
  152. if (ctx == NULL) {
  153. ctx = new_ctx = BN_CTX_new();
  154. if (ctx == NULL) {
  155. return 0;
  156. }
  157. }
  158. int ret = 0;
  159. BN_CTX_start(ctx);
  160. if (BN_cmp(&point->Z, &group->one) == 0) {
  161. // |point| is already affine.
  162. if (x != NULL && !BN_from_montgomery(x, &point->X, group->mont, ctx)) {
  163. goto err;
  164. }
  165. if (y != NULL && !BN_from_montgomery(y, &point->Y, group->mont, ctx)) {
  166. goto err;
  167. }
  168. } else {
  169. // transform (X, Y, Z) into (x, y) := (X/Z^2, Y/Z^3)
  170. BIGNUM *Z_1 = BN_CTX_get(ctx);
  171. BIGNUM *Z_2 = BN_CTX_get(ctx);
  172. BIGNUM *Z_3 = BN_CTX_get(ctx);
  173. if (Z_1 == NULL ||
  174. Z_2 == NULL ||
  175. Z_3 == NULL) {
  176. goto err;
  177. }
  178. // The straightforward way to calculate the inverse of a Montgomery-encoded
  179. // value where the result is Montgomery-encoded is:
  180. //
  181. // |BN_from_montgomery| + invert + |BN_to_montgomery|.
  182. //
  183. // This is equivalent, but more efficient, because |BN_from_montgomery|
  184. // is more efficient (at least in theory) than |BN_to_montgomery|, since it
  185. // doesn't have to do the multiplication before the reduction.
  186. //
  187. // Use Fermat's Little Theorem instead of |BN_mod_inverse_odd| since this
  188. // inversion may be done as the final step of private key operations.
  189. // Unfortunately, this is suboptimal for ECDSA verification.
  190. if (!BN_from_montgomery(Z_1, &point->Z, group->mont, ctx) ||
  191. !BN_from_montgomery(Z_1, Z_1, group->mont, ctx) ||
  192. !bn_mod_inverse_prime(Z_1, Z_1, &group->field, ctx, group->mont)) {
  193. goto err;
  194. }
  195. if (!BN_mod_mul_montgomery(Z_2, Z_1, Z_1, group->mont, ctx)) {
  196. goto err;
  197. }
  198. // Instead of using |BN_from_montgomery| to convert the |x| coordinate
  199. // and then calling |BN_from_montgomery| again to convert the |y|
  200. // coordinate below, convert the common factor |Z_2| once now, saving one
  201. // reduction.
  202. if (!BN_from_montgomery(Z_2, Z_2, group->mont, ctx)) {
  203. goto err;
  204. }
  205. if (x != NULL) {
  206. if (!BN_mod_mul_montgomery(x, &point->X, Z_2, group->mont, ctx)) {
  207. goto err;
  208. }
  209. }
  210. if (y != NULL) {
  211. if (!BN_mod_mul_montgomery(Z_3, Z_2, Z_1, group->mont, ctx) ||
  212. !BN_mod_mul_montgomery(y, &point->Y, Z_3, group->mont, ctx)) {
  213. goto err;
  214. }
  215. }
  216. }
  217. ret = 1;
  218. err:
  219. BN_CTX_end(ctx);
  220. BN_CTX_free(new_ctx);
  221. return ret;
  222. }
  223. DEFINE_METHOD_FUNCTION(EC_METHOD, EC_GFp_mont_method) {
  224. out->group_init = ec_GFp_mont_group_init;
  225. out->group_finish = ec_GFp_mont_group_finish;
  226. out->group_set_curve = ec_GFp_mont_group_set_curve;
  227. out->point_get_affine_coordinates = ec_GFp_mont_point_get_affine_coordinates;
  228. out->mul = ec_wNAF_mul /* XXX: Not constant time. */;
  229. out->mul_public = ec_wNAF_mul;
  230. out->field_mul = ec_GFp_mont_field_mul;
  231. out->field_sqr = ec_GFp_mont_field_sqr;
  232. out->field_encode = ec_GFp_mont_field_encode;
  233. out->field_decode = ec_GFp_mont_field_decode;
  234. }