internal.h 26 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573
  1. /* Copyright (C) 1995-1997 Eric Young (eay@cryptsoft.com)
  2. * All rights reserved.
  3. *
  4. * This package is an SSL implementation written
  5. * by Eric Young (eay@cryptsoft.com).
  6. * The implementation was written so as to conform with Netscapes SSL.
  7. *
  8. * This library is free for commercial and non-commercial use as long as
  9. * the following conditions are aheared to. The following conditions
  10. * apply to all code found in this distribution, be it the RC4, RSA,
  11. * lhash, DES, etc., code; not just the SSL code. The SSL documentation
  12. * included with this distribution is covered by the same copyright terms
  13. * except that the holder is Tim Hudson (tjh@cryptsoft.com).
  14. *
  15. * Copyright remains Eric Young's, and as such any Copyright notices in
  16. * the code are not to be removed.
  17. * If this package is used in a product, Eric Young should be given attribution
  18. * as the author of the parts of the library used.
  19. * This can be in the form of a textual message at program startup or
  20. * in documentation (online or textual) provided with the package.
  21. *
  22. * Redistribution and use in source and binary forms, with or without
  23. * modification, are permitted provided that the following conditions
  24. * are met:
  25. * 1. Redistributions of source code must retain the copyright
  26. * notice, this list of conditions and the following disclaimer.
  27. * 2. Redistributions in binary form must reproduce the above copyright
  28. * notice, this list of conditions and the following disclaimer in the
  29. * documentation and/or other materials provided with the distribution.
  30. * 3. All advertising materials mentioning features or use of this software
  31. * must display the following acknowledgement:
  32. * "This product includes cryptographic software written by
  33. * Eric Young (eay@cryptsoft.com)"
  34. * The word 'cryptographic' can be left out if the rouines from the library
  35. * being used are not cryptographic related :-).
  36. * 4. If you include any Windows specific code (or a derivative thereof) from
  37. * the apps directory (application code) you must include an acknowledgement:
  38. * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
  39. *
  40. * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
  41. * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  42. * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  43. * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
  44. * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  45. * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
  46. * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
  47. * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
  48. * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
  49. * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
  50. * SUCH DAMAGE.
  51. *
  52. * The licence and distribution terms for any publically available version or
  53. * derivative of this code cannot be changed. i.e. this code cannot simply be
  54. * copied and put under another distribution licence
  55. * [including the GNU Public Licence.]
  56. */
  57. /* ====================================================================
  58. * Copyright (c) 1998-2006 The OpenSSL Project. All rights reserved.
  59. *
  60. * Redistribution and use in source and binary forms, with or without
  61. * modification, are permitted provided that the following conditions
  62. * are met:
  63. *
  64. * 1. Redistributions of source code must retain the above copyright
  65. * notice, this list of conditions and the following disclaimer.
  66. *
  67. * 2. Redistributions in binary form must reproduce the above copyright
  68. * notice, this list of conditions and the following disclaimer in
  69. * the documentation and/or other materials provided with the
  70. * distribution.
  71. *
  72. * 3. All advertising materials mentioning features or use of this
  73. * software must display the following acknowledgment:
  74. * "This product includes software developed by the OpenSSL Project
  75. * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
  76. *
  77. * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
  78. * endorse or promote products derived from this software without
  79. * prior written permission. For written permission, please contact
  80. * openssl-core@openssl.org.
  81. *
  82. * 5. Products derived from this software may not be called "OpenSSL"
  83. * nor may "OpenSSL" appear in their names without prior written
  84. * permission of the OpenSSL Project.
  85. *
  86. * 6. Redistributions of any form whatsoever must retain the following
  87. * acknowledgment:
  88. * "This product includes software developed by the OpenSSL Project
  89. * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
  90. *
  91. * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
  92. * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  93. * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
  94. * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
  95. * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  96. * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
  97. * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
  98. * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
  99. * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
  100. * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
  101. * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
  102. * OF THE POSSIBILITY OF SUCH DAMAGE.
  103. * ====================================================================
  104. *
  105. * This product includes cryptographic software written by Eric Young
  106. * (eay@cryptsoft.com). This product includes software written by Tim
  107. * Hudson (tjh@cryptsoft.com).
  108. *
  109. */
  110. /* ====================================================================
  111. * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
  112. *
  113. * Portions of the attached software ("Contribution") are developed by
  114. * SUN MICROSYSTEMS, INC., and are contributed to the OpenSSL project.
  115. *
  116. * The Contribution is licensed pursuant to the Eric Young open source
  117. * license provided above.
  118. *
  119. * The binary polynomial arithmetic software is originally written by
  120. * Sheueling Chang Shantz and Douglas Stebila of Sun Microsystems
  121. * Laboratories. */
  122. #ifndef OPENSSL_HEADER_BN_INTERNAL_H
  123. #define OPENSSL_HEADER_BN_INTERNAL_H
  124. #include <openssl/base.h>
  125. #if defined(OPENSSL_X86_64) && defined(_MSC_VER)
  126. OPENSSL_MSVC_PRAGMA(warning(push, 3))
  127. #include <intrin.h>
  128. OPENSSL_MSVC_PRAGMA(warning(pop))
  129. #pragma intrinsic(__umulh, _umul128)
  130. #endif
  131. #include "../../internal.h"
  132. #if defined(__cplusplus)
  133. extern "C" {
  134. #endif
  135. #if defined(OPENSSL_64_BIT)
  136. #if defined(BORINGSSL_HAS_UINT128)
  137. // MSVC doesn't support two-word integers on 64-bit.
  138. #define BN_ULLONG uint128_t
  139. #if defined(BORINGSSL_CAN_DIVIDE_UINT128)
  140. #define BN_CAN_DIVIDE_ULLONG
  141. #endif
  142. #endif
  143. #define BN_BITS2 64
  144. #define BN_BYTES 8
  145. #define BN_BITS4 32
  146. #define BN_MASK2 (0xffffffffffffffffUL)
  147. #define BN_MASK2l (0xffffffffUL)
  148. #define BN_MASK2h (0xffffffff00000000UL)
  149. #define BN_MASK2h1 (0xffffffff80000000UL)
  150. #define BN_MONT_CTX_N0_LIMBS 1
  151. #define BN_DEC_CONV (10000000000000000000UL)
  152. #define BN_DEC_NUM 19
  153. #define TOBN(hi, lo) ((BN_ULONG)(hi) << 32 | (lo))
  154. #elif defined(OPENSSL_32_BIT)
  155. #define BN_ULLONG uint64_t
  156. #define BN_CAN_DIVIDE_ULLONG
  157. #define BN_BITS2 32
  158. #define BN_BYTES 4
  159. #define BN_BITS4 16
  160. #define BN_MASK2 (0xffffffffUL)
  161. #define BN_MASK2l (0xffffUL)
  162. #define BN_MASK2h1 (0xffff8000UL)
  163. #define BN_MASK2h (0xffff0000UL)
  164. // On some 32-bit platforms, Montgomery multiplication is done using 64-bit
  165. // arithmetic with SIMD instructions. On such platforms, |BN_MONT_CTX::n0|
  166. // needs to be two words long. Only certain 32-bit platforms actually make use
  167. // of n0[1] and shorter R value would suffice for the others. However,
  168. // currently only the assembly files know which is which.
  169. #define BN_MONT_CTX_N0_LIMBS 2
  170. #define BN_DEC_CONV (1000000000UL)
  171. #define BN_DEC_NUM 9
  172. #define TOBN(hi, lo) (lo), (hi)
  173. #else
  174. #error "Must define either OPENSSL_32_BIT or OPENSSL_64_BIT"
  175. #endif
  176. #define STATIC_BIGNUM(x) \
  177. { \
  178. (BN_ULONG *)(x), sizeof(x) / sizeof(BN_ULONG), \
  179. sizeof(x) / sizeof(BN_ULONG), 0, BN_FLG_STATIC_DATA \
  180. }
  181. #if defined(BN_ULLONG)
  182. #define Lw(t) ((BN_ULONG)(t))
  183. #define Hw(t) ((BN_ULONG)((t) >> BN_BITS2))
  184. #endif
  185. // bn_minimal_width returns the minimal value of |bn->top| which fits the
  186. // value of |bn|.
  187. int bn_minimal_width(const BIGNUM *bn);
  188. // bn_set_minimal_width sets |bn->width| to |bn_minimal_width(bn)|. If |bn| is
  189. // zero, |bn->neg| is set to zero.
  190. void bn_set_minimal_width(BIGNUM *bn);
  191. // bn_wexpand ensures that |bn| has at least |words| works of space without
  192. // altering its value. It returns one on success or zero on allocation
  193. // failure.
  194. int bn_wexpand(BIGNUM *bn, size_t words);
  195. // bn_expand acts the same as |bn_wexpand|, but takes a number of bits rather
  196. // than a number of words.
  197. int bn_expand(BIGNUM *bn, size_t bits);
  198. // bn_resize_words adjusts |bn->top| to be |words|. It returns one on success
  199. // and zero on allocation error or if |bn|'s value is too large.
  200. OPENSSL_EXPORT int bn_resize_words(BIGNUM *bn, size_t words);
  201. // bn_select_words sets |r| to |a| if |mask| is all ones or |b| if |mask| is
  202. // all zeros.
  203. void bn_select_words(BN_ULONG *r, BN_ULONG mask, const BN_ULONG *a,
  204. const BN_ULONG *b, size_t num);
  205. // bn_set_words sets |bn| to the value encoded in the |num| words in |words|,
  206. // least significant word first.
  207. int bn_set_words(BIGNUM *bn, const BN_ULONG *words, size_t num);
  208. // bn_fits_in_words returns one if |bn| may be represented in |num| words, plus
  209. // a sign bit, and zero otherwise.
  210. int bn_fits_in_words(const BIGNUM *bn, size_t num);
  211. // bn_copy_words copies the value of |bn| to |out| and returns one if the value
  212. // is representable in |num| words. Otherwise, it returns zero.
  213. int bn_copy_words(BN_ULONG *out, size_t num, const BIGNUM *bn);
  214. // bn_mul_add_words multiples |ap| by |w|, adds the result to |rp|, and places
  215. // the result in |rp|. |ap| and |rp| must both be |num| words long. It returns
  216. // the carry word of the operation. |ap| and |rp| may be equal but otherwise may
  217. // not alias.
  218. BN_ULONG bn_mul_add_words(BN_ULONG *rp, const BN_ULONG *ap, size_t num,
  219. BN_ULONG w);
  220. // bn_mul_words multiples |ap| by |w| and places the result in |rp|. |ap| and
  221. // |rp| must both be |num| words long. It returns the carry word of the
  222. // operation. |ap| and |rp| may be equal but otherwise may not alias.
  223. BN_ULONG bn_mul_words(BN_ULONG *rp, const BN_ULONG *ap, size_t num, BN_ULONG w);
  224. // bn_sqr_words sets |rp[2*i]| and |rp[2*i+1]| to |ap[i]|'s square, for all |i|
  225. // up to |num|. |ap| is an array of |num| words and |rp| an array of |2*num|
  226. // words. |ap| and |rp| may not alias.
  227. //
  228. // This gives the contribution of the |ap[i]*ap[i]| terms when squaring |ap|.
  229. void bn_sqr_words(BN_ULONG *rp, const BN_ULONG *ap, size_t num);
  230. // bn_add_words adds |ap| to |bp| and places the result in |rp|, each of which
  231. // are |num| words long. It returns the carry bit, which is one if the operation
  232. // overflowed and zero otherwise. Any pair of |ap|, |bp|, and |rp| may be equal
  233. // to each other but otherwise may not alias.
  234. BN_ULONG bn_add_words(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp,
  235. size_t num);
  236. // bn_sub_words subtracts |bp| from |ap| and places the result in |rp|. It
  237. // returns the borrow bit, which is one if the computation underflowed and zero
  238. // otherwise. Any pair of |ap|, |bp|, and |rp| may be equal to each other but
  239. // otherwise may not alias.
  240. BN_ULONG bn_sub_words(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp,
  241. size_t num);
  242. // bn_mul_comba4 sets |r| to the product of |a| and |b|.
  243. void bn_mul_comba4(BN_ULONG r[8], const BN_ULONG a[4], const BN_ULONG b[4]);
  244. // bn_mul_comba8 sets |r| to the product of |a| and |b|.
  245. void bn_mul_comba8(BN_ULONG r[16], const BN_ULONG a[8], const BN_ULONG b[8]);
  246. // bn_sqr_comba8 sets |r| to |a|^2.
  247. void bn_sqr_comba8(BN_ULONG r[16], const BN_ULONG a[4]);
  248. // bn_sqr_comba4 sets |r| to |a|^2.
  249. void bn_sqr_comba4(BN_ULONG r[8], const BN_ULONG a[4]);
  250. // bn_less_than_words returns one if |a| < |b| and zero otherwise, where |a|
  251. // and |b| both are |len| words long. It runs in constant time.
  252. int bn_less_than_words(const BN_ULONG *a, const BN_ULONG *b, size_t len);
  253. // bn_in_range_words returns one if |min_inclusive| <= |a| < |max_exclusive|,
  254. // where |a| and |max_exclusive| both are |len| words long. |a| and
  255. // |max_exclusive| are treated as secret.
  256. int bn_in_range_words(const BN_ULONG *a, BN_ULONG min_inclusive,
  257. const BN_ULONG *max_exclusive, size_t len);
  258. // bn_rand_range_words sets |out| to a uniformly distributed random number from
  259. // |min_inclusive| to |max_exclusive|. Both |out| and |max_exclusive| are |len|
  260. // words long.
  261. //
  262. // This function runs in time independent of the result, but |min_inclusive| and
  263. // |max_exclusive| are public data. (Information about the range is unavoidably
  264. // leaked by how many iterations it took to select a number.)
  265. int bn_rand_range_words(BN_ULONG *out, BN_ULONG min_inclusive,
  266. const BN_ULONG *max_exclusive, size_t len,
  267. const uint8_t additional_data[32]);
  268. // bn_range_secret_range behaves like |BN_rand_range_ex|, but treats
  269. // |max_exclusive| as secret. Because of this constraint, the distribution of
  270. // values returned is more complex.
  271. //
  272. // Rather than repeatedly generating values until one is in range, which would
  273. // leak information, it generates one value. If the value is in range, it sets
  274. // |*out_is_uniform| to one. Otherwise, it sets |*out_is_uniform| to zero,
  275. // fixing up the value to force it in range.
  276. //
  277. // The subset of calls to |bn_rand_secret_range| which set |*out_is_uniform| to
  278. // one are uniformly distributed in the target range. Calls overall are not.
  279. // This function is intended for use in situations where the extra values are
  280. // still usable and where the number of iterations needed to reach the target
  281. // number of uniform outputs may be blinded for negligible probabilities of
  282. // timing leaks.
  283. //
  284. // Although this function treats |max_exclusive| as secret, it treats the number
  285. // of bits in |max_exclusive| as public.
  286. int bn_rand_secret_range(BIGNUM *r, int *out_is_uniform, BN_ULONG min_inclusive,
  287. const BIGNUM *max_exclusive);
  288. int bn_mul_mont(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp,
  289. const BN_ULONG *np, const BN_ULONG *n0, int num);
  290. uint64_t bn_mont_n0(const BIGNUM *n);
  291. // bn_mod_exp_base_2_consttime calculates r = 2**p (mod n). |p| must be larger
  292. // than log_2(n); i.e. 2**p must be larger than |n|. |n| must be positive and
  293. // odd. |p| and the bit width of |n| are assumed public, but |n| is otherwise
  294. // treated as secret.
  295. int bn_mod_exp_base_2_consttime(BIGNUM *r, unsigned p, const BIGNUM *n,
  296. BN_CTX *ctx);
  297. #if defined(OPENSSL_X86_64) && defined(_MSC_VER)
  298. #define BN_UMULT_LOHI(low, high, a, b) ((low) = _umul128((a), (b), &(high)))
  299. #endif
  300. #if !defined(BN_ULLONG) && !defined(BN_UMULT_LOHI)
  301. #error "Either BN_ULLONG or BN_UMULT_LOHI must be defined on every platform."
  302. #endif
  303. // bn_jacobi returns the Jacobi symbol of |a| and |b| (which is -1, 0 or 1), or
  304. // -2 on error.
  305. int bn_jacobi(const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx);
  306. // bn_is_bit_set_words returns one if bit |bit| is set in |a| and zero
  307. // otherwise.
  308. int bn_is_bit_set_words(const BN_ULONG *a, size_t num, unsigned bit);
  309. // bn_one_to_montgomery sets |r| to one in Montgomery form. It returns one on
  310. // success and zero on error. This function treats the bit width of the modulus
  311. // as public.
  312. int bn_one_to_montgomery(BIGNUM *r, const BN_MONT_CTX *mont, BN_CTX *ctx);
  313. // bn_less_than_montgomery_R returns one if |bn| is less than the Montgomery R
  314. // value for |mont| and zero otherwise.
  315. int bn_less_than_montgomery_R(const BIGNUM *bn, const BN_MONT_CTX *mont);
  316. // bn_mod_u16_consttime returns |bn| mod |d|, ignoring |bn|'s sign bit. It runs
  317. // in time independent of the value of |bn|, but it treats |d| as public.
  318. OPENSSL_EXPORT uint16_t bn_mod_u16_consttime(const BIGNUM *bn, uint16_t d);
  319. // bn_odd_number_is_obviously_composite returns one if |bn| is divisible by one
  320. // of the first several odd primes and zero otherwise.
  321. int bn_odd_number_is_obviously_composite(const BIGNUM *bn);
  322. // bn_rshift1_words sets |r| to |a| >> 1, where both arrays are |num| bits wide.
  323. void bn_rshift1_words(BN_ULONG *r, const BN_ULONG *a, size_t num);
  324. // bn_rshift_secret_shift behaves like |BN_rshift| but runs in time independent
  325. // of both |a| and |n|.
  326. OPENSSL_EXPORT int bn_rshift_secret_shift(BIGNUM *r, const BIGNUM *a,
  327. unsigned n, BN_CTX *ctx);
  328. // Constant-time non-modular arithmetic.
  329. //
  330. // The following functions implement non-modular arithmetic in constant-time
  331. // and pessimally set |r->width| to the largest possible word size.
  332. //
  333. // Note this means that, e.g., repeatedly multiplying by one will cause widths
  334. // to increase without bound. The corresponding public API functions minimize
  335. // their outputs to avoid regressing calculator consumers.
  336. // bn_uadd_consttime behaves like |BN_uadd|, but it pessimally sets
  337. // |r->width| = |a->width| + |b->width| + 1.
  338. int bn_uadd_consttime(BIGNUM *r, const BIGNUM *a, const BIGNUM *b);
  339. // bn_usub_consttime behaves like |BN_usub|, but it pessimally sets
  340. // |r->width| = |a->width|.
  341. int bn_usub_consttime(BIGNUM *r, const BIGNUM *a, const BIGNUM *b);
  342. // bn_abs_sub_consttime sets |r| to the absolute value of |a| - |b|, treating
  343. // both inputs as secret. It returns one on success and zero on error.
  344. OPENSSL_EXPORT int bn_abs_sub_consttime(BIGNUM *r, const BIGNUM *a,
  345. const BIGNUM *b, BN_CTX *ctx);
  346. // bn_mul_consttime behaves like |BN_mul|, but it rejects negative inputs and
  347. // pessimally sets |r->width| to |a->width| + |b->width|, to avoid leaking
  348. // information about |a| and |b|.
  349. int bn_mul_consttime(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx);
  350. // bn_sqrt_consttime behaves like |BN_sqrt|, but it pessimally sets |r->width|
  351. // to 2*|a->width|, to avoid leaking information about |a| and |b|.
  352. int bn_sqr_consttime(BIGNUM *r, const BIGNUM *a, BN_CTX *ctx);
  353. // bn_div_consttime behaves like |BN_div|, but it rejects negative inputs and
  354. // treats both inputs, including their magnitudes, as secret. It is, as a
  355. // result, much slower than |BN_div| and should only be used for rare operations
  356. // where Montgomery reduction is not available.
  357. //
  358. // Note that |quotient->width| will be set pessimally to |numerator->width|.
  359. OPENSSL_EXPORT int bn_div_consttime(BIGNUM *quotient, BIGNUM *remainder,
  360. const BIGNUM *numerator,
  361. const BIGNUM *divisor, BN_CTX *ctx);
  362. // bn_is_relatively_prime checks whether GCD(|x|, |y|) is one. On success, it
  363. // returns one and sets |*out_relatively_prime| to one if the GCD was one and
  364. // zero otherwise. On error, it returns zero.
  365. OPENSSL_EXPORT int bn_is_relatively_prime(int *out_relatively_prime,
  366. const BIGNUM *x, const BIGNUM *y,
  367. BN_CTX *ctx);
  368. // bn_lcm_consttime sets |r| to LCM(|a|, |b|). It returns one and success and
  369. // zero on error. |a| and |b| are both treated as secret.
  370. OPENSSL_EXPORT int bn_lcm_consttime(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
  371. BN_CTX *ctx);
  372. // Constant-time modular arithmetic.
  373. //
  374. // The following functions implement basic constant-time modular arithmetic.
  375. // bn_mod_add_consttime acts like |BN_mod_add_quick| but takes a |BN_CTX|.
  376. int bn_mod_add_consttime(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
  377. const BIGNUM *m, BN_CTX *ctx);
  378. // bn_mod_sub_consttime acts like |BN_mod_sub_quick| but takes a |BN_CTX|.
  379. int bn_mod_sub_consttime(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
  380. const BIGNUM *m, BN_CTX *ctx);
  381. // bn_mod_lshift1_consttime acts like |BN_mod_lshift1_quick| but takes a
  382. // |BN_CTX|.
  383. int bn_mod_lshift1_consttime(BIGNUM *r, const BIGNUM *a, const BIGNUM *m,
  384. BN_CTX *ctx);
  385. // bn_mod_lshift_consttime acts like |BN_mod_lshift_quick| but takes a |BN_CTX|.
  386. int bn_mod_lshift_consttime(BIGNUM *r, const BIGNUM *a, int n, const BIGNUM *m,
  387. BN_CTX *ctx);
  388. // bn_mod_inverse_consttime sets |r| to |a|^-1, mod |n|. |a| must be non-
  389. // negative and less than |n|. It returns one on success and zero on error. On
  390. // failure, if the failure was caused by |a| having no inverse mod |n| then
  391. // |*out_no_inverse| will be set to one; otherwise it will be set to zero.
  392. //
  393. // This function treats both |a| and |n| as secret, provided they are both non-
  394. // zero and the inverse exists. It should only be used for even moduli where
  395. // none of the less general implementations are applicable.
  396. OPENSSL_EXPORT int bn_mod_inverse_consttime(BIGNUM *r, int *out_no_inverse,
  397. const BIGNUM *a, const BIGNUM *n,
  398. BN_CTX *ctx);
  399. // bn_mod_inverse_prime sets |out| to the modular inverse of |a| modulo |p|,
  400. // computed with Fermat's Little Theorem. It returns one on success and zero on
  401. // error. If |mont_p| is NULL, one will be computed temporarily.
  402. int bn_mod_inverse_prime(BIGNUM *out, const BIGNUM *a, const BIGNUM *p,
  403. BN_CTX *ctx, const BN_MONT_CTX *mont_p);
  404. // bn_mod_inverse_secret_prime behaves like |bn_mod_inverse_prime| but uses
  405. // |BN_mod_exp_mont_consttime| instead of |BN_mod_exp_mont| in hopes of
  406. // protecting the exponent.
  407. int bn_mod_inverse_secret_prime(BIGNUM *out, const BIGNUM *a, const BIGNUM *p,
  408. BN_CTX *ctx, const BN_MONT_CTX *mont_p);
  409. // Low-level operations for small numbers.
  410. //
  411. // The following functions implement algorithms suitable for use with scalars
  412. // and field elements in elliptic curves. They rely on the number being small
  413. // both to stack-allocate various temporaries and because they do not implement
  414. // optimizations useful for the larger values used in RSA.
  415. // BN_SMALL_MAX_WORDS is the largest size input these functions handle. This
  416. // limit allows temporaries to be more easily stack-allocated. This limit is set
  417. // to accommodate P-521.
  418. #if defined(OPENSSL_32_BIT)
  419. #define BN_SMALL_MAX_WORDS 17
  420. #else
  421. #define BN_SMALL_MAX_WORDS 9
  422. #endif
  423. // bn_mul_small sets |r| to |a|*|b|. |num_r| must be |num_a| + |num_b|. |r| may
  424. // not alias with |a| or |b|. This function returns one on success and zero if
  425. // lengths are inconsistent.
  426. int bn_mul_small(BN_ULONG *r, size_t num_r, const BN_ULONG *a, size_t num_a,
  427. const BN_ULONG *b, size_t num_b);
  428. // bn_sqr_small sets |r| to |a|^2. |num_a| must be at most |BN_SMALL_MAX_WORDS|.
  429. // |num_r| must be |num_a|*2. |r| and |a| may not alias. This function returns
  430. // one on success and zero on programmer error.
  431. int bn_sqr_small(BN_ULONG *r, size_t num_r, const BN_ULONG *a, size_t num_a);
  432. // In the following functions, the modulus must be at most |BN_SMALL_MAX_WORDS|
  433. // words long.
  434. // bn_to_montgomery_small sets |r| to |a| translated to the Montgomery domain.
  435. // |num_a| and |num_r| must be the length of the modulus, which is
  436. // |mont->N.top|. |a| must be fully reduced. This function returns one on
  437. // success and zero if lengths are inconsistent. |r| and |a| may alias.
  438. int bn_to_montgomery_small(BN_ULONG *r, size_t num_r, const BN_ULONG *a,
  439. size_t num_a, const BN_MONT_CTX *mont);
  440. // bn_from_montgomery_small sets |r| to |a| translated out of the Montgomery
  441. // domain. |num_r| must be the length of the modulus, which is |mont->N.top|.
  442. // |a| must be at most |mont->N.top| * R and |num_a| must be at most 2 *
  443. // |mont->N.top|. This function returns one on success and zero if lengths are
  444. // inconsistent. |r| and |a| may alias.
  445. int bn_from_montgomery_small(BN_ULONG *r, size_t num_r, const BN_ULONG *a,
  446. size_t num_a, const BN_MONT_CTX *mont);
  447. // bn_one_to_montgomery_small sets |r| to one in Montgomery form. It returns one
  448. // on success and zero on error. |num_r| must be the length of the modulus,
  449. // which is |mont->N.top|. This function treats the bit width of the modulus as
  450. // public.
  451. int bn_one_to_montgomery_small(BN_ULONG *r, size_t num_r,
  452. const BN_MONT_CTX *mont);
  453. // bn_mod_mul_montgomery_small sets |r| to |a| * |b| mod |mont->N|. Both inputs
  454. // and outputs are in the Montgomery domain. |num_r| must be the length of the
  455. // modulus, which is |mont->N.top|. This function returns one on success and
  456. // zero on internal error or inconsistent lengths. Any two of |r|, |a|, and |b|
  457. // may alias.
  458. //
  459. // This function requires |a| * |b| < N * R, where N is the modulus and R is the
  460. // Montgomery divisor, 2^(N.top * BN_BITS2). This should generally be satisfied
  461. // by ensuring |a| and |b| are fully reduced, however ECDSA has one computation
  462. // which requires the more general bound.
  463. int bn_mod_mul_montgomery_small(BN_ULONG *r, size_t num_r, const BN_ULONG *a,
  464. size_t num_a, const BN_ULONG *b, size_t num_b,
  465. const BN_MONT_CTX *mont);
  466. // bn_mod_exp_mont_small sets |r| to |a|^|p| mod |mont->N|. It returns one on
  467. // success and zero on programmer or internal error. Both inputs and outputs are
  468. // in the Montgomery domain. |num_r| and |num_a| must be |mont->N.top|, which
  469. // must be at most |BN_SMALL_MAX_WORDS|. |a| must be fully-reduced. This
  470. // function runs in time independent of |a|, but |p| and |mont->N| are public
  471. // values.
  472. //
  473. // Note this function differs from |BN_mod_exp_mont| which uses Montgomery
  474. // reduction but takes input and output outside the Montgomery domain. Combine
  475. // this function with |bn_from_montgomery_small| and |bn_to_montgomery_small|
  476. // if necessary.
  477. int bn_mod_exp_mont_small(BN_ULONG *r, size_t num_r, const BN_ULONG *a,
  478. size_t num_a, const BN_ULONG *p, size_t num_p,
  479. const BN_MONT_CTX *mont);
  480. // bn_mod_inverse_prime_mont_small sets |r| to |a|^-1 mod |mont->N|. |mont->N|
  481. // must be a prime. |num_r| and |num_a| must be |mont->N.top|, which must be at
  482. // most |BN_SMALL_MAX_WORDS|. |a| must be fully-reduced. This function runs in
  483. // time independent of |a|, but |mont->N| is a public value.
  484. int bn_mod_inverse_prime_mont_small(BN_ULONG *r, size_t num_r,
  485. const BN_ULONG *a, size_t num_a,
  486. const BN_MONT_CTX *mont);
  487. #if defined(__cplusplus)
  488. } // extern C
  489. #endif
  490. #endif // OPENSSL_HEADER_BN_INTERNAL_H