| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573 |
- /* Copyright (C) 1995-1997 Eric Young (eay@cryptsoft.com)
- * All rights reserved.
- *
- * This package is an SSL implementation written
- * by Eric Young (eay@cryptsoft.com).
- * The implementation was written so as to conform with Netscapes SSL.
- *
- * This library is free for commercial and non-commercial use as long as
- * the following conditions are aheared to. The following conditions
- * apply to all code found in this distribution, be it the RC4, RSA,
- * lhash, DES, etc., code; not just the SSL code. The SSL documentation
- * included with this distribution is covered by the same copyright terms
- * except that the holder is Tim Hudson (tjh@cryptsoft.com).
- *
- * Copyright remains Eric Young's, and as such any Copyright notices in
- * the code are not to be removed.
- * If this package is used in a product, Eric Young should be given attribution
- * as the author of the parts of the library used.
- * This can be in the form of a textual message at program startup or
- * in documentation (online or textual) provided with the package.
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions
- * are met:
- * 1. Redistributions of source code must retain the copyright
- * notice, this list of conditions and the following disclaimer.
- * 2. Redistributions in binary form must reproduce the above copyright
- * notice, this list of conditions and the following disclaimer in the
- * documentation and/or other materials provided with the distribution.
- * 3. All advertising materials mentioning features or use of this software
- * must display the following acknowledgement:
- * "This product includes cryptographic software written by
- * Eric Young (eay@cryptsoft.com)"
- * The word 'cryptographic' can be left out if the rouines from the library
- * being used are not cryptographic related :-).
- * 4. If you include any Windows specific code (or a derivative thereof) from
- * the apps directory (application code) you must include an acknowledgement:
- * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
- *
- * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
- * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
- * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
- * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
- * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
- * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
- * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
- * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
- * SUCH DAMAGE.
- *
- * The licence and distribution terms for any publically available version or
- * derivative of this code cannot be changed. i.e. this code cannot simply be
- * copied and put under another distribution licence
- * [including the GNU Public Licence.]
- */
- /* ====================================================================
- * Copyright (c) 1998-2006 The OpenSSL Project. All rights reserved.
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions
- * are met:
- *
- * 1. Redistributions of source code must retain the above copyright
- * notice, this list of conditions and the following disclaimer.
- *
- * 2. Redistributions in binary form must reproduce the above copyright
- * notice, this list of conditions and the following disclaimer in
- * the documentation and/or other materials provided with the
- * distribution.
- *
- * 3. All advertising materials mentioning features or use of this
- * software must display the following acknowledgment:
- * "This product includes software developed by the OpenSSL Project
- * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
- *
- * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
- * endorse or promote products derived from this software without
- * prior written permission. For written permission, please contact
- * openssl-core@openssl.org.
- *
- * 5. Products derived from this software may not be called "OpenSSL"
- * nor may "OpenSSL" appear in their names without prior written
- * permission of the OpenSSL Project.
- *
- * 6. Redistributions of any form whatsoever must retain the following
- * acknowledgment:
- * "This product includes software developed by the OpenSSL Project
- * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
- *
- * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
- * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
- * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
- * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
- * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
- * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
- * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
- * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
- * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
- * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
- * OF THE POSSIBILITY OF SUCH DAMAGE.
- * ====================================================================
- *
- * This product includes cryptographic software written by Eric Young
- * (eay@cryptsoft.com). This product includes software written by Tim
- * Hudson (tjh@cryptsoft.com).
- *
- */
- /* ====================================================================
- * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
- *
- * Portions of the attached software ("Contribution") are developed by
- * SUN MICROSYSTEMS, INC., and are contributed to the OpenSSL project.
- *
- * The Contribution is licensed pursuant to the Eric Young open source
- * license provided above.
- *
- * The binary polynomial arithmetic software is originally written by
- * Sheueling Chang Shantz and Douglas Stebila of Sun Microsystems
- * Laboratories. */
- #ifndef OPENSSL_HEADER_BN_INTERNAL_H
- #define OPENSSL_HEADER_BN_INTERNAL_H
- #include <openssl/base.h>
- #if defined(OPENSSL_X86_64) && defined(_MSC_VER)
- OPENSSL_MSVC_PRAGMA(warning(push, 3))
- #include <intrin.h>
- OPENSSL_MSVC_PRAGMA(warning(pop))
- #pragma intrinsic(__umulh, _umul128)
- #endif
- #include "../../internal.h"
- #if defined(__cplusplus)
- extern "C" {
- #endif
- #if defined(OPENSSL_64_BIT)
- #if defined(BORINGSSL_HAS_UINT128)
- // MSVC doesn't support two-word integers on 64-bit.
- #define BN_ULLONG uint128_t
- #if defined(BORINGSSL_CAN_DIVIDE_UINT128)
- #define BN_CAN_DIVIDE_ULLONG
- #endif
- #endif
- #define BN_BITS2 64
- #define BN_BYTES 8
- #define BN_BITS4 32
- #define BN_MASK2 (0xffffffffffffffffUL)
- #define BN_MASK2l (0xffffffffUL)
- #define BN_MASK2h (0xffffffff00000000UL)
- #define BN_MASK2h1 (0xffffffff80000000UL)
- #define BN_MONT_CTX_N0_LIMBS 1
- #define BN_DEC_CONV (10000000000000000000UL)
- #define BN_DEC_NUM 19
- #define TOBN(hi, lo) ((BN_ULONG)(hi) << 32 | (lo))
- #elif defined(OPENSSL_32_BIT)
- #define BN_ULLONG uint64_t
- #define BN_CAN_DIVIDE_ULLONG
- #define BN_BITS2 32
- #define BN_BYTES 4
- #define BN_BITS4 16
- #define BN_MASK2 (0xffffffffUL)
- #define BN_MASK2l (0xffffUL)
- #define BN_MASK2h1 (0xffff8000UL)
- #define BN_MASK2h (0xffff0000UL)
- // On some 32-bit platforms, Montgomery multiplication is done using 64-bit
- // arithmetic with SIMD instructions. On such platforms, |BN_MONT_CTX::n0|
- // needs to be two words long. Only certain 32-bit platforms actually make use
- // of n0[1] and shorter R value would suffice for the others. However,
- // currently only the assembly files know which is which.
- #define BN_MONT_CTX_N0_LIMBS 2
- #define BN_DEC_CONV (1000000000UL)
- #define BN_DEC_NUM 9
- #define TOBN(hi, lo) (lo), (hi)
- #else
- #error "Must define either OPENSSL_32_BIT or OPENSSL_64_BIT"
- #endif
- #define STATIC_BIGNUM(x) \
- { \
- (BN_ULONG *)(x), sizeof(x) / sizeof(BN_ULONG), \
- sizeof(x) / sizeof(BN_ULONG), 0, BN_FLG_STATIC_DATA \
- }
- #if defined(BN_ULLONG)
- #define Lw(t) ((BN_ULONG)(t))
- #define Hw(t) ((BN_ULONG)((t) >> BN_BITS2))
- #endif
- // bn_minimal_width returns the minimal value of |bn->top| which fits the
- // value of |bn|.
- int bn_minimal_width(const BIGNUM *bn);
- // bn_set_minimal_width sets |bn->width| to |bn_minimal_width(bn)|. If |bn| is
- // zero, |bn->neg| is set to zero.
- void bn_set_minimal_width(BIGNUM *bn);
- // bn_wexpand ensures that |bn| has at least |words| works of space without
- // altering its value. It returns one on success or zero on allocation
- // failure.
- int bn_wexpand(BIGNUM *bn, size_t words);
- // bn_expand acts the same as |bn_wexpand|, but takes a number of bits rather
- // than a number of words.
- int bn_expand(BIGNUM *bn, size_t bits);
- // bn_resize_words adjusts |bn->top| to be |words|. It returns one on success
- // and zero on allocation error or if |bn|'s value is too large.
- OPENSSL_EXPORT int bn_resize_words(BIGNUM *bn, size_t words);
- // bn_select_words sets |r| to |a| if |mask| is all ones or |b| if |mask| is
- // all zeros.
- void bn_select_words(BN_ULONG *r, BN_ULONG mask, const BN_ULONG *a,
- const BN_ULONG *b, size_t num);
- // bn_set_words sets |bn| to the value encoded in the |num| words in |words|,
- // least significant word first.
- int bn_set_words(BIGNUM *bn, const BN_ULONG *words, size_t num);
- // bn_fits_in_words returns one if |bn| may be represented in |num| words, plus
- // a sign bit, and zero otherwise.
- int bn_fits_in_words(const BIGNUM *bn, size_t num);
- // bn_copy_words copies the value of |bn| to |out| and returns one if the value
- // is representable in |num| words. Otherwise, it returns zero.
- int bn_copy_words(BN_ULONG *out, size_t num, const BIGNUM *bn);
- // bn_mul_add_words multiples |ap| by |w|, adds the result to |rp|, and places
- // the result in |rp|. |ap| and |rp| must both be |num| words long. It returns
- // the carry word of the operation. |ap| and |rp| may be equal but otherwise may
- // not alias.
- BN_ULONG bn_mul_add_words(BN_ULONG *rp, const BN_ULONG *ap, size_t num,
- BN_ULONG w);
- // bn_mul_words multiples |ap| by |w| and places the result in |rp|. |ap| and
- // |rp| must both be |num| words long. It returns the carry word of the
- // operation. |ap| and |rp| may be equal but otherwise may not alias.
- BN_ULONG bn_mul_words(BN_ULONG *rp, const BN_ULONG *ap, size_t num, BN_ULONG w);
- // bn_sqr_words sets |rp[2*i]| and |rp[2*i+1]| to |ap[i]|'s square, for all |i|
- // up to |num|. |ap| is an array of |num| words and |rp| an array of |2*num|
- // words. |ap| and |rp| may not alias.
- //
- // This gives the contribution of the |ap[i]*ap[i]| terms when squaring |ap|.
- void bn_sqr_words(BN_ULONG *rp, const BN_ULONG *ap, size_t num);
- // bn_add_words adds |ap| to |bp| and places the result in |rp|, each of which
- // are |num| words long. It returns the carry bit, which is one if the operation
- // overflowed and zero otherwise. Any pair of |ap|, |bp|, and |rp| may be equal
- // to each other but otherwise may not alias.
- BN_ULONG bn_add_words(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp,
- size_t num);
- // bn_sub_words subtracts |bp| from |ap| and places the result in |rp|. It
- // returns the borrow bit, which is one if the computation underflowed and zero
- // otherwise. Any pair of |ap|, |bp|, and |rp| may be equal to each other but
- // otherwise may not alias.
- BN_ULONG bn_sub_words(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp,
- size_t num);
- // bn_mul_comba4 sets |r| to the product of |a| and |b|.
- void bn_mul_comba4(BN_ULONG r[8], const BN_ULONG a[4], const BN_ULONG b[4]);
- // bn_mul_comba8 sets |r| to the product of |a| and |b|.
- void bn_mul_comba8(BN_ULONG r[16], const BN_ULONG a[8], const BN_ULONG b[8]);
- // bn_sqr_comba8 sets |r| to |a|^2.
- void bn_sqr_comba8(BN_ULONG r[16], const BN_ULONG a[4]);
- // bn_sqr_comba4 sets |r| to |a|^2.
- void bn_sqr_comba4(BN_ULONG r[8], const BN_ULONG a[4]);
- // bn_less_than_words returns one if |a| < |b| and zero otherwise, where |a|
- // and |b| both are |len| words long. It runs in constant time.
- int bn_less_than_words(const BN_ULONG *a, const BN_ULONG *b, size_t len);
- // bn_in_range_words returns one if |min_inclusive| <= |a| < |max_exclusive|,
- // where |a| and |max_exclusive| both are |len| words long. |a| and
- // |max_exclusive| are treated as secret.
- int bn_in_range_words(const BN_ULONG *a, BN_ULONG min_inclusive,
- const BN_ULONG *max_exclusive, size_t len);
- // bn_rand_range_words sets |out| to a uniformly distributed random number from
- // |min_inclusive| to |max_exclusive|. Both |out| and |max_exclusive| are |len|
- // words long.
- //
- // This function runs in time independent of the result, but |min_inclusive| and
- // |max_exclusive| are public data. (Information about the range is unavoidably
- // leaked by how many iterations it took to select a number.)
- int bn_rand_range_words(BN_ULONG *out, BN_ULONG min_inclusive,
- const BN_ULONG *max_exclusive, size_t len,
- const uint8_t additional_data[32]);
- // bn_range_secret_range behaves like |BN_rand_range_ex|, but treats
- // |max_exclusive| as secret. Because of this constraint, the distribution of
- // values returned is more complex.
- //
- // Rather than repeatedly generating values until one is in range, which would
- // leak information, it generates one value. If the value is in range, it sets
- // |*out_is_uniform| to one. Otherwise, it sets |*out_is_uniform| to zero,
- // fixing up the value to force it in range.
- //
- // The subset of calls to |bn_rand_secret_range| which set |*out_is_uniform| to
- // one are uniformly distributed in the target range. Calls overall are not.
- // This function is intended for use in situations where the extra values are
- // still usable and where the number of iterations needed to reach the target
- // number of uniform outputs may be blinded for negligible probabilities of
- // timing leaks.
- //
- // Although this function treats |max_exclusive| as secret, it treats the number
- // of bits in |max_exclusive| as public.
- int bn_rand_secret_range(BIGNUM *r, int *out_is_uniform, BN_ULONG min_inclusive,
- const BIGNUM *max_exclusive);
- int bn_mul_mont(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp,
- const BN_ULONG *np, const BN_ULONG *n0, int num);
- uint64_t bn_mont_n0(const BIGNUM *n);
- // bn_mod_exp_base_2_consttime calculates r = 2**p (mod n). |p| must be larger
- // than log_2(n); i.e. 2**p must be larger than |n|. |n| must be positive and
- // odd. |p| and the bit width of |n| are assumed public, but |n| is otherwise
- // treated as secret.
- int bn_mod_exp_base_2_consttime(BIGNUM *r, unsigned p, const BIGNUM *n,
- BN_CTX *ctx);
- #if defined(OPENSSL_X86_64) && defined(_MSC_VER)
- #define BN_UMULT_LOHI(low, high, a, b) ((low) = _umul128((a), (b), &(high)))
- #endif
- #if !defined(BN_ULLONG) && !defined(BN_UMULT_LOHI)
- #error "Either BN_ULLONG or BN_UMULT_LOHI must be defined on every platform."
- #endif
- // bn_jacobi returns the Jacobi symbol of |a| and |b| (which is -1, 0 or 1), or
- // -2 on error.
- int bn_jacobi(const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx);
- // bn_is_bit_set_words returns one if bit |bit| is set in |a| and zero
- // otherwise.
- int bn_is_bit_set_words(const BN_ULONG *a, size_t num, unsigned bit);
- // bn_one_to_montgomery sets |r| to one in Montgomery form. It returns one on
- // success and zero on error. This function treats the bit width of the modulus
- // as public.
- int bn_one_to_montgomery(BIGNUM *r, const BN_MONT_CTX *mont, BN_CTX *ctx);
- // bn_less_than_montgomery_R returns one if |bn| is less than the Montgomery R
- // value for |mont| and zero otherwise.
- int bn_less_than_montgomery_R(const BIGNUM *bn, const BN_MONT_CTX *mont);
- // bn_mod_u16_consttime returns |bn| mod |d|, ignoring |bn|'s sign bit. It runs
- // in time independent of the value of |bn|, but it treats |d| as public.
- OPENSSL_EXPORT uint16_t bn_mod_u16_consttime(const BIGNUM *bn, uint16_t d);
- // bn_odd_number_is_obviously_composite returns one if |bn| is divisible by one
- // of the first several odd primes and zero otherwise.
- int bn_odd_number_is_obviously_composite(const BIGNUM *bn);
- // bn_rshift1_words sets |r| to |a| >> 1, where both arrays are |num| bits wide.
- void bn_rshift1_words(BN_ULONG *r, const BN_ULONG *a, size_t num);
- // bn_rshift_secret_shift behaves like |BN_rshift| but runs in time independent
- // of both |a| and |n|.
- OPENSSL_EXPORT int bn_rshift_secret_shift(BIGNUM *r, const BIGNUM *a,
- unsigned n, BN_CTX *ctx);
- // Constant-time non-modular arithmetic.
- //
- // The following functions implement non-modular arithmetic in constant-time
- // and pessimally set |r->width| to the largest possible word size.
- //
- // Note this means that, e.g., repeatedly multiplying by one will cause widths
- // to increase without bound. The corresponding public API functions minimize
- // their outputs to avoid regressing calculator consumers.
- // bn_uadd_consttime behaves like |BN_uadd|, but it pessimally sets
- // |r->width| = |a->width| + |b->width| + 1.
- int bn_uadd_consttime(BIGNUM *r, const BIGNUM *a, const BIGNUM *b);
- // bn_usub_consttime behaves like |BN_usub|, but it pessimally sets
- // |r->width| = |a->width|.
- int bn_usub_consttime(BIGNUM *r, const BIGNUM *a, const BIGNUM *b);
- // bn_abs_sub_consttime sets |r| to the absolute value of |a| - |b|, treating
- // both inputs as secret. It returns one on success and zero on error.
- OPENSSL_EXPORT int bn_abs_sub_consttime(BIGNUM *r, const BIGNUM *a,
- const BIGNUM *b, BN_CTX *ctx);
- // bn_mul_consttime behaves like |BN_mul|, but it rejects negative inputs and
- // pessimally sets |r->width| to |a->width| + |b->width|, to avoid leaking
- // information about |a| and |b|.
- int bn_mul_consttime(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx);
- // bn_sqrt_consttime behaves like |BN_sqrt|, but it pessimally sets |r->width|
- // to 2*|a->width|, to avoid leaking information about |a| and |b|.
- int bn_sqr_consttime(BIGNUM *r, const BIGNUM *a, BN_CTX *ctx);
- // bn_div_consttime behaves like |BN_div|, but it rejects negative inputs and
- // treats both inputs, including their magnitudes, as secret. It is, as a
- // result, much slower than |BN_div| and should only be used for rare operations
- // where Montgomery reduction is not available.
- //
- // Note that |quotient->width| will be set pessimally to |numerator->width|.
- OPENSSL_EXPORT int bn_div_consttime(BIGNUM *quotient, BIGNUM *remainder,
- const BIGNUM *numerator,
- const BIGNUM *divisor, BN_CTX *ctx);
- // bn_is_relatively_prime checks whether GCD(|x|, |y|) is one. On success, it
- // returns one and sets |*out_relatively_prime| to one if the GCD was one and
- // zero otherwise. On error, it returns zero.
- OPENSSL_EXPORT int bn_is_relatively_prime(int *out_relatively_prime,
- const BIGNUM *x, const BIGNUM *y,
- BN_CTX *ctx);
- // bn_lcm_consttime sets |r| to LCM(|a|, |b|). It returns one and success and
- // zero on error. |a| and |b| are both treated as secret.
- OPENSSL_EXPORT int bn_lcm_consttime(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
- BN_CTX *ctx);
- // Constant-time modular arithmetic.
- //
- // The following functions implement basic constant-time modular arithmetic.
- // bn_mod_add_consttime acts like |BN_mod_add_quick| but takes a |BN_CTX|.
- int bn_mod_add_consttime(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
- const BIGNUM *m, BN_CTX *ctx);
- // bn_mod_sub_consttime acts like |BN_mod_sub_quick| but takes a |BN_CTX|.
- int bn_mod_sub_consttime(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
- const BIGNUM *m, BN_CTX *ctx);
- // bn_mod_lshift1_consttime acts like |BN_mod_lshift1_quick| but takes a
- // |BN_CTX|.
- int bn_mod_lshift1_consttime(BIGNUM *r, const BIGNUM *a, const BIGNUM *m,
- BN_CTX *ctx);
- // bn_mod_lshift_consttime acts like |BN_mod_lshift_quick| but takes a |BN_CTX|.
- int bn_mod_lshift_consttime(BIGNUM *r, const BIGNUM *a, int n, const BIGNUM *m,
- BN_CTX *ctx);
- // bn_mod_inverse_consttime sets |r| to |a|^-1, mod |n|. |a| must be non-
- // negative and less than |n|. It returns one on success and zero on error. On
- // failure, if the failure was caused by |a| having no inverse mod |n| then
- // |*out_no_inverse| will be set to one; otherwise it will be set to zero.
- //
- // This function treats both |a| and |n| as secret, provided they are both non-
- // zero and the inverse exists. It should only be used for even moduli where
- // none of the less general implementations are applicable.
- OPENSSL_EXPORT int bn_mod_inverse_consttime(BIGNUM *r, int *out_no_inverse,
- const BIGNUM *a, const BIGNUM *n,
- BN_CTX *ctx);
- // bn_mod_inverse_prime sets |out| to the modular inverse of |a| modulo |p|,
- // computed with Fermat's Little Theorem. It returns one on success and zero on
- // error. If |mont_p| is NULL, one will be computed temporarily.
- int bn_mod_inverse_prime(BIGNUM *out, const BIGNUM *a, const BIGNUM *p,
- BN_CTX *ctx, const BN_MONT_CTX *mont_p);
- // bn_mod_inverse_secret_prime behaves like |bn_mod_inverse_prime| but uses
- // |BN_mod_exp_mont_consttime| instead of |BN_mod_exp_mont| in hopes of
- // protecting the exponent.
- int bn_mod_inverse_secret_prime(BIGNUM *out, const BIGNUM *a, const BIGNUM *p,
- BN_CTX *ctx, const BN_MONT_CTX *mont_p);
- // Low-level operations for small numbers.
- //
- // The following functions implement algorithms suitable for use with scalars
- // and field elements in elliptic curves. They rely on the number being small
- // both to stack-allocate various temporaries and because they do not implement
- // optimizations useful for the larger values used in RSA.
- // BN_SMALL_MAX_WORDS is the largest size input these functions handle. This
- // limit allows temporaries to be more easily stack-allocated. This limit is set
- // to accommodate P-521.
- #if defined(OPENSSL_32_BIT)
- #define BN_SMALL_MAX_WORDS 17
- #else
- #define BN_SMALL_MAX_WORDS 9
- #endif
- // bn_mul_small sets |r| to |a|*|b|. |num_r| must be |num_a| + |num_b|. |r| may
- // not alias with |a| or |b|. This function returns one on success and zero if
- // lengths are inconsistent.
- int bn_mul_small(BN_ULONG *r, size_t num_r, const BN_ULONG *a, size_t num_a,
- const BN_ULONG *b, size_t num_b);
- // bn_sqr_small sets |r| to |a|^2. |num_a| must be at most |BN_SMALL_MAX_WORDS|.
- // |num_r| must be |num_a|*2. |r| and |a| may not alias. This function returns
- // one on success and zero on programmer error.
- int bn_sqr_small(BN_ULONG *r, size_t num_r, const BN_ULONG *a, size_t num_a);
- // In the following functions, the modulus must be at most |BN_SMALL_MAX_WORDS|
- // words long.
- // bn_to_montgomery_small sets |r| to |a| translated to the Montgomery domain.
- // |num_a| and |num_r| must be the length of the modulus, which is
- // |mont->N.top|. |a| must be fully reduced. This function returns one on
- // success and zero if lengths are inconsistent. |r| and |a| may alias.
- int bn_to_montgomery_small(BN_ULONG *r, size_t num_r, const BN_ULONG *a,
- size_t num_a, const BN_MONT_CTX *mont);
- // bn_from_montgomery_small sets |r| to |a| translated out of the Montgomery
- // domain. |num_r| must be the length of the modulus, which is |mont->N.top|.
- // |a| must be at most |mont->N.top| * R and |num_a| must be at most 2 *
- // |mont->N.top|. This function returns one on success and zero if lengths are
- // inconsistent. |r| and |a| may alias.
- int bn_from_montgomery_small(BN_ULONG *r, size_t num_r, const BN_ULONG *a,
- size_t num_a, const BN_MONT_CTX *mont);
- // bn_one_to_montgomery_small sets |r| to one in Montgomery form. It returns one
- // on success and zero on error. |num_r| must be the length of the modulus,
- // which is |mont->N.top|. This function treats the bit width of the modulus as
- // public.
- int bn_one_to_montgomery_small(BN_ULONG *r, size_t num_r,
- const BN_MONT_CTX *mont);
- // bn_mod_mul_montgomery_small sets |r| to |a| * |b| mod |mont->N|. Both inputs
- // and outputs are in the Montgomery domain. |num_r| must be the length of the
- // modulus, which is |mont->N.top|. This function returns one on success and
- // zero on internal error or inconsistent lengths. Any two of |r|, |a|, and |b|
- // may alias.
- //
- // This function requires |a| * |b| < N * R, where N is the modulus and R is the
- // Montgomery divisor, 2^(N.top * BN_BITS2). This should generally be satisfied
- // by ensuring |a| and |b| are fully reduced, however ECDSA has one computation
- // which requires the more general bound.
- int bn_mod_mul_montgomery_small(BN_ULONG *r, size_t num_r, const BN_ULONG *a,
- size_t num_a, const BN_ULONG *b, size_t num_b,
- const BN_MONT_CTX *mont);
- // bn_mod_exp_mont_small sets |r| to |a|^|p| mod |mont->N|. It returns one on
- // success and zero on programmer or internal error. Both inputs and outputs are
- // in the Montgomery domain. |num_r| and |num_a| must be |mont->N.top|, which
- // must be at most |BN_SMALL_MAX_WORDS|. |a| must be fully-reduced. This
- // function runs in time independent of |a|, but |p| and |mont->N| are public
- // values.
- //
- // Note this function differs from |BN_mod_exp_mont| which uses Montgomery
- // reduction but takes input and output outside the Montgomery domain. Combine
- // this function with |bn_from_montgomery_small| and |bn_to_montgomery_small|
- // if necessary.
- int bn_mod_exp_mont_small(BN_ULONG *r, size_t num_r, const BN_ULONG *a,
- size_t num_a, const BN_ULONG *p, size_t num_p,
- const BN_MONT_CTX *mont);
- // bn_mod_inverse_prime_mont_small sets |r| to |a|^-1 mod |mont->N|. |mont->N|
- // must be a prime. |num_r| and |num_a| must be |mont->N.top|, which must be at
- // most |BN_SMALL_MAX_WORDS|. |a| must be fully-reduced. This function runs in
- // time independent of |a|, but |mont->N| is a public value.
- int bn_mod_inverse_prime_mont_small(BN_ULONG *r, size_t num_r,
- const BN_ULONG *a, size_t num_a,
- const BN_MONT_CTX *mont);
- #if defined(__cplusplus)
- } // extern C
- #endif
- #endif // OPENSSL_HEADER_BN_INTERNAL_H
|