sha256.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329
  1. /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
  2. * All rights reserved.
  3. *
  4. * This package is an SSL implementation written
  5. * by Eric Young (eay@cryptsoft.com).
  6. * The implementation was written so as to conform with Netscapes SSL.
  7. *
  8. * This library is free for commercial and non-commercial use as long as
  9. * the following conditions are aheared to. The following conditions
  10. * apply to all code found in this distribution, be it the RC4, RSA,
  11. * lhash, DES, etc., code; not just the SSL code. The SSL documentation
  12. * included with this distribution is covered by the same copyright terms
  13. * except that the holder is Tim Hudson (tjh@cryptsoft.com).
  14. *
  15. * Copyright remains Eric Young's, and as such any Copyright notices in
  16. * the code are not to be removed.
  17. * If this package is used in a product, Eric Young should be given attribution
  18. * as the author of the parts of the library used.
  19. * This can be in the form of a textual message at program startup or
  20. * in documentation (online or textual) provided with the package.
  21. *
  22. * Redistribution and use in source and binary forms, with or without
  23. * modification, are permitted provided that the following conditions
  24. * are met:
  25. * 1. Redistributions of source code must retain the copyright
  26. * notice, this list of conditions and the following disclaimer.
  27. * 2. Redistributions in binary form must reproduce the above copyright
  28. * notice, this list of conditions and the following disclaimer in the
  29. * documentation and/or other materials provided with the distribution.
  30. * 3. All advertising materials mentioning features or use of this software
  31. * must display the following acknowledgement:
  32. * "This product includes cryptographic software written by
  33. * Eric Young (eay@cryptsoft.com)"
  34. * The word 'cryptographic' can be left out if the rouines from the library
  35. * being used are not cryptographic related :-).
  36. * 4. If you include any Windows specific code (or a derivative thereof) from
  37. * the apps directory (application code) you must include an acknowledgement:
  38. * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
  39. *
  40. * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
  41. * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  42. * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  43. * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
  44. * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  45. * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
  46. * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
  47. * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
  48. * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
  49. * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
  50. * SUCH DAMAGE.
  51. *
  52. * The licence and distribution terms for any publically available version or
  53. * derivative of this code cannot be changed. i.e. this code cannot simply be
  54. * copied and put under another distribution licence
  55. * [including the GNU Public Licence.] */
  56. #include <openssl/sha.h>
  57. #include <string.h>
  58. #include <openssl/mem.h>
  59. #include "../internal.h"
  60. #if !defined(OPENSSL_NO_ASM) && \
  61. (defined(OPENSSL_X86) || defined(OPENSSL_X86_64) || \
  62. defined(OPENSSL_ARM) || defined(OPENSSL_AARCH64))
  63. #define SHA256_ASM
  64. #endif
  65. int SHA224_Init(SHA256_CTX *sha) {
  66. OPENSSL_memset(sha, 0, sizeof(SHA256_CTX));
  67. sha->h[0] = 0xc1059ed8UL;
  68. sha->h[1] = 0x367cd507UL;
  69. sha->h[2] = 0x3070dd17UL;
  70. sha->h[3] = 0xf70e5939UL;
  71. sha->h[4] = 0xffc00b31UL;
  72. sha->h[5] = 0x68581511UL;
  73. sha->h[6] = 0x64f98fa7UL;
  74. sha->h[7] = 0xbefa4fa4UL;
  75. sha->md_len = SHA224_DIGEST_LENGTH;
  76. return 1;
  77. }
  78. int SHA256_Init(SHA256_CTX *sha) {
  79. OPENSSL_memset(sha, 0, sizeof(SHA256_CTX));
  80. sha->h[0] = 0x6a09e667UL;
  81. sha->h[1] = 0xbb67ae85UL;
  82. sha->h[2] = 0x3c6ef372UL;
  83. sha->h[3] = 0xa54ff53aUL;
  84. sha->h[4] = 0x510e527fUL;
  85. sha->h[5] = 0x9b05688cUL;
  86. sha->h[6] = 0x1f83d9abUL;
  87. sha->h[7] = 0x5be0cd19UL;
  88. sha->md_len = SHA256_DIGEST_LENGTH;
  89. return 1;
  90. }
  91. uint8_t *SHA224(const uint8_t *data, size_t len, uint8_t *out) {
  92. SHA256_CTX ctx;
  93. static uint8_t buf[SHA224_DIGEST_LENGTH];
  94. /* TODO(fork): remove this static buffer. */
  95. if (out == NULL) {
  96. out = buf;
  97. }
  98. SHA224_Init(&ctx);
  99. SHA224_Update(&ctx, data, len);
  100. SHA224_Final(out, &ctx);
  101. OPENSSL_cleanse(&ctx, sizeof(ctx));
  102. return out;
  103. }
  104. uint8_t *SHA256(const uint8_t *data, size_t len, uint8_t *out) {
  105. SHA256_CTX ctx;
  106. static uint8_t buf[SHA256_DIGEST_LENGTH];
  107. /* TODO(fork): remove this static buffer. */
  108. if (out == NULL) {
  109. out = buf;
  110. }
  111. SHA256_Init(&ctx);
  112. SHA256_Update(&ctx, data, len);
  113. SHA256_Final(out, &ctx);
  114. OPENSSL_cleanse(&ctx, sizeof(ctx));
  115. return out;
  116. }
  117. int SHA224_Update(SHA256_CTX *ctx, const void *data, size_t len) {
  118. return SHA256_Update(ctx, data, len);
  119. }
  120. int SHA224_Final(uint8_t *md, SHA256_CTX *ctx) {
  121. return SHA256_Final(md, ctx);
  122. }
  123. #define DATA_ORDER_IS_BIG_ENDIAN
  124. #define HASH_CTX SHA256_CTX
  125. #define HASH_CBLOCK 64
  126. /* Note that FIPS180-2 discusses "Truncation of the Hash Function Output."
  127. * default: case below covers for it. It's not clear however if it's permitted
  128. * to truncate to amount of bytes not divisible by 4. I bet not, but if it is,
  129. * then default: case shall be extended. For reference. Idea behind separate
  130. * cases for pre-defined lenghts is to let the compiler decide if it's
  131. * appropriate to unroll small loops.
  132. *
  133. * TODO(davidben): The small |md_len| case is one of the few places a low-level
  134. * hash 'final' function can fail. This should never happen. */
  135. #define HASH_MAKE_STRING(c, s) \
  136. do { \
  137. uint32_t ll; \
  138. unsigned int nn; \
  139. switch ((c)->md_len) { \
  140. case SHA224_DIGEST_LENGTH: \
  141. for (nn = 0; nn < SHA224_DIGEST_LENGTH / 4; nn++) { \
  142. ll = (c)->h[nn]; \
  143. HOST_l2c(ll, (s)); \
  144. } \
  145. break; \
  146. case SHA256_DIGEST_LENGTH: \
  147. for (nn = 0; nn < SHA256_DIGEST_LENGTH / 4; nn++) { \
  148. ll = (c)->h[nn]; \
  149. HOST_l2c(ll, (s)); \
  150. } \
  151. break; \
  152. default: \
  153. if ((c)->md_len > SHA256_DIGEST_LENGTH) { \
  154. return 0; \
  155. } \
  156. for (nn = 0; nn < (c)->md_len / 4; nn++) { \
  157. ll = (c)->h[nn]; \
  158. HOST_l2c(ll, (s)); \
  159. } \
  160. break; \
  161. } \
  162. } while (0)
  163. #define HASH_UPDATE SHA256_Update
  164. #define HASH_TRANSFORM SHA256_Transform
  165. #define HASH_FINAL SHA256_Final
  166. #define HASH_BLOCK_DATA_ORDER sha256_block_data_order
  167. #ifndef SHA256_ASM
  168. static
  169. #endif
  170. void sha256_block_data_order(uint32_t *state, const uint8_t *in, size_t num);
  171. #include "../digest/md32_common.h"
  172. #ifndef SHA256_ASM
  173. static const uint32_t K256[64] = {
  174. 0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL, 0x3956c25bUL,
  175. 0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL, 0xd807aa98UL, 0x12835b01UL,
  176. 0x243185beUL, 0x550c7dc3UL, 0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL,
  177. 0xc19bf174UL, 0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL,
  178. 0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL, 0x983e5152UL,
  179. 0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL, 0xc6e00bf3UL, 0xd5a79147UL,
  180. 0x06ca6351UL, 0x14292967UL, 0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL,
  181. 0x53380d13UL, 0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL,
  182. 0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL, 0xd192e819UL,
  183. 0xd6990624UL, 0xf40e3585UL, 0x106aa070UL, 0x19a4c116UL, 0x1e376c08UL,
  184. 0x2748774cUL, 0x34b0bcb5UL, 0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL,
  185. 0x682e6ff3UL, 0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL,
  186. 0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL};
  187. #define ROTATE(a, n) (((a) << (n)) | ((a) >> (32 - (n))))
  188. /* FIPS specification refers to right rotations, while our ROTATE macro
  189. * is left one. This is why you might notice that rotation coefficients
  190. * differ from those observed in FIPS document by 32-N... */
  191. #define Sigma0(x) (ROTATE((x), 30) ^ ROTATE((x), 19) ^ ROTATE((x), 10))
  192. #define Sigma1(x) (ROTATE((x), 26) ^ ROTATE((x), 21) ^ ROTATE((x), 7))
  193. #define sigma0(x) (ROTATE((x), 25) ^ ROTATE((x), 14) ^ ((x) >> 3))
  194. #define sigma1(x) (ROTATE((x), 15) ^ ROTATE((x), 13) ^ ((x) >> 10))
  195. #define Ch(x, y, z) (((x) & (y)) ^ ((~(x)) & (z)))
  196. #define Maj(x, y, z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
  197. #define ROUND_00_15(i, a, b, c, d, e, f, g, h) \
  198. do { \
  199. T1 += h + Sigma1(e) + Ch(e, f, g) + K256[i]; \
  200. h = Sigma0(a) + Maj(a, b, c); \
  201. d += T1; \
  202. h += T1; \
  203. } while (0)
  204. #define ROUND_16_63(i, a, b, c, d, e, f, g, h, X) \
  205. do { \
  206. s0 = X[(i + 1) & 0x0f]; \
  207. s0 = sigma0(s0); \
  208. s1 = X[(i + 14) & 0x0f]; \
  209. s1 = sigma1(s1); \
  210. T1 = X[(i) & 0x0f] += s0 + s1 + X[(i + 9) & 0x0f]; \
  211. ROUND_00_15(i, a, b, c, d, e, f, g, h); \
  212. } while (0)
  213. static void sha256_block_data_order(uint32_t *state, const uint8_t *data,
  214. size_t num) {
  215. uint32_t a, b, c, d, e, f, g, h, s0, s1, T1;
  216. uint32_t X[16];
  217. int i;
  218. while (num--) {
  219. a = state[0];
  220. b = state[1];
  221. c = state[2];
  222. d = state[3];
  223. e = state[4];
  224. f = state[5];
  225. g = state[6];
  226. h = state[7];
  227. uint32_t l;
  228. HOST_c2l(data, l);
  229. T1 = X[0] = l;
  230. ROUND_00_15(0, a, b, c, d, e, f, g, h);
  231. HOST_c2l(data, l);
  232. T1 = X[1] = l;
  233. ROUND_00_15(1, h, a, b, c, d, e, f, g);
  234. HOST_c2l(data, l);
  235. T1 = X[2] = l;
  236. ROUND_00_15(2, g, h, a, b, c, d, e, f);
  237. HOST_c2l(data, l);
  238. T1 = X[3] = l;
  239. ROUND_00_15(3, f, g, h, a, b, c, d, e);
  240. HOST_c2l(data, l);
  241. T1 = X[4] = l;
  242. ROUND_00_15(4, e, f, g, h, a, b, c, d);
  243. HOST_c2l(data, l);
  244. T1 = X[5] = l;
  245. ROUND_00_15(5, d, e, f, g, h, a, b, c);
  246. HOST_c2l(data, l);
  247. T1 = X[6] = l;
  248. ROUND_00_15(6, c, d, e, f, g, h, a, b);
  249. HOST_c2l(data, l);
  250. T1 = X[7] = l;
  251. ROUND_00_15(7, b, c, d, e, f, g, h, a);
  252. HOST_c2l(data, l);
  253. T1 = X[8] = l;
  254. ROUND_00_15(8, a, b, c, d, e, f, g, h);
  255. HOST_c2l(data, l);
  256. T1 = X[9] = l;
  257. ROUND_00_15(9, h, a, b, c, d, e, f, g);
  258. HOST_c2l(data, l);
  259. T1 = X[10] = l;
  260. ROUND_00_15(10, g, h, a, b, c, d, e, f);
  261. HOST_c2l(data, l);
  262. T1 = X[11] = l;
  263. ROUND_00_15(11, f, g, h, a, b, c, d, e);
  264. HOST_c2l(data, l);
  265. T1 = X[12] = l;
  266. ROUND_00_15(12, e, f, g, h, a, b, c, d);
  267. HOST_c2l(data, l);
  268. T1 = X[13] = l;
  269. ROUND_00_15(13, d, e, f, g, h, a, b, c);
  270. HOST_c2l(data, l);
  271. T1 = X[14] = l;
  272. ROUND_00_15(14, c, d, e, f, g, h, a, b);
  273. HOST_c2l(data, l);
  274. T1 = X[15] = l;
  275. ROUND_00_15(15, b, c, d, e, f, g, h, a);
  276. for (i = 16; i < 64; i += 8) {
  277. ROUND_16_63(i + 0, a, b, c, d, e, f, g, h, X);
  278. ROUND_16_63(i + 1, h, a, b, c, d, e, f, g, X);
  279. ROUND_16_63(i + 2, g, h, a, b, c, d, e, f, X);
  280. ROUND_16_63(i + 3, f, g, h, a, b, c, d, e, X);
  281. ROUND_16_63(i + 4, e, f, g, h, a, b, c, d, X);
  282. ROUND_16_63(i + 5, d, e, f, g, h, a, b, c, X);
  283. ROUND_16_63(i + 6, c, d, e, f, g, h, a, b, X);
  284. ROUND_16_63(i + 7, b, c, d, e, f, g, h, a, X);
  285. }
  286. state[0] += a;
  287. state[1] += b;
  288. state[2] += c;
  289. state[3] += d;
  290. state[4] += e;
  291. state[5] += f;
  292. state[6] += g;
  293. state[7] += h;
  294. }
  295. }
  296. #endif /* SHA256_ASM */