ec_montgomery.c 8.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277
  1. /* Originally written by Bodo Moeller and Nils Larsch for the OpenSSL project.
  2. * ====================================================================
  3. * Copyright (c) 1998-2005 The OpenSSL Project. All rights reserved.
  4. *
  5. * Redistribution and use in source and binary forms, with or without
  6. * modification, are permitted provided that the following conditions
  7. * are met:
  8. *
  9. * 1. Redistributions of source code must retain the above copyright
  10. * notice, this list of conditions and the following disclaimer.
  11. *
  12. * 2. Redistributions in binary form must reproduce the above copyright
  13. * notice, this list of conditions and the following disclaimer in
  14. * the documentation and/or other materials provided with the
  15. * distribution.
  16. *
  17. * 3. All advertising materials mentioning features or use of this
  18. * software must display the following acknowledgment:
  19. * "This product includes software developed by the OpenSSL Project
  20. * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
  21. *
  22. * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
  23. * endorse or promote products derived from this software without
  24. * prior written permission. For written permission, please contact
  25. * openssl-core@openssl.org.
  26. *
  27. * 5. Products derived from this software may not be called "OpenSSL"
  28. * nor may "OpenSSL" appear in their names without prior written
  29. * permission of the OpenSSL Project.
  30. *
  31. * 6. Redistributions of any form whatsoever must retain the following
  32. * acknowledgment:
  33. * "This product includes software developed by the OpenSSL Project
  34. * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
  35. *
  36. * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
  37. * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  38. * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
  39. * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
  40. * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  41. * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
  42. * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
  43. * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
  44. * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
  45. * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
  46. * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
  47. * OF THE POSSIBILITY OF SUCH DAMAGE.
  48. * ====================================================================
  49. *
  50. * This product includes cryptographic software written by Eric Young
  51. * (eay@cryptsoft.com). This product includes software written by Tim
  52. * Hudson (tjh@cryptsoft.com).
  53. *
  54. */
  55. /* ====================================================================
  56. * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
  57. *
  58. * Portions of the attached software ("Contribution") are developed by
  59. * SUN MICROSYSTEMS, INC., and are contributed to the OpenSSL project.
  60. *
  61. * The Contribution is licensed pursuant to the OpenSSL open source
  62. * license provided above.
  63. *
  64. * The elliptic curve binary polynomial software is originally written by
  65. * Sheueling Chang Shantz and Douglas Stebila of Sun Microsystems
  66. * Laboratories. */
  67. #include <openssl/ec.h>
  68. #include <openssl/bn.h>
  69. #include <openssl/err.h>
  70. #include <openssl/mem.h>
  71. #include "../bn/internal.h"
  72. #include "../delocate.h"
  73. #include "internal.h"
  74. int ec_GFp_mont_group_init(EC_GROUP *group) {
  75. int ok;
  76. ok = ec_GFp_simple_group_init(group);
  77. group->mont = NULL;
  78. return ok;
  79. }
  80. void ec_GFp_mont_group_finish(EC_GROUP *group) {
  81. BN_MONT_CTX_free(group->mont);
  82. group->mont = NULL;
  83. ec_GFp_simple_group_finish(group);
  84. }
  85. int ec_GFp_mont_group_set_curve(EC_GROUP *group, const BIGNUM *p,
  86. const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx) {
  87. BN_CTX *new_ctx = NULL;
  88. BN_MONT_CTX *mont = NULL;
  89. int ret = 0;
  90. BN_MONT_CTX_free(group->mont);
  91. group->mont = NULL;
  92. if (ctx == NULL) {
  93. ctx = new_ctx = BN_CTX_new();
  94. if (ctx == NULL) {
  95. return 0;
  96. }
  97. }
  98. mont = BN_MONT_CTX_new();
  99. if (mont == NULL) {
  100. goto err;
  101. }
  102. if (!BN_MONT_CTX_set(mont, p, ctx)) {
  103. OPENSSL_PUT_ERROR(EC, ERR_R_BN_LIB);
  104. goto err;
  105. }
  106. group->mont = mont;
  107. mont = NULL;
  108. ret = ec_GFp_simple_group_set_curve(group, p, a, b, ctx);
  109. if (!ret) {
  110. BN_MONT_CTX_free(group->mont);
  111. group->mont = NULL;
  112. }
  113. err:
  114. BN_CTX_free(new_ctx);
  115. BN_MONT_CTX_free(mont);
  116. return ret;
  117. }
  118. int ec_GFp_mont_field_mul(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a,
  119. const BIGNUM *b, BN_CTX *ctx) {
  120. if (group->mont == NULL) {
  121. OPENSSL_PUT_ERROR(EC, EC_R_NOT_INITIALIZED);
  122. return 0;
  123. }
  124. return BN_mod_mul_montgomery(r, a, b, group->mont, ctx);
  125. }
  126. int ec_GFp_mont_field_sqr(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a,
  127. BN_CTX *ctx) {
  128. if (group->mont == NULL) {
  129. OPENSSL_PUT_ERROR(EC, EC_R_NOT_INITIALIZED);
  130. return 0;
  131. }
  132. return BN_mod_mul_montgomery(r, a, a, group->mont, ctx);
  133. }
  134. int ec_GFp_mont_field_encode(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a,
  135. BN_CTX *ctx) {
  136. if (group->mont == NULL) {
  137. OPENSSL_PUT_ERROR(EC, EC_R_NOT_INITIALIZED);
  138. return 0;
  139. }
  140. return BN_to_montgomery(r, a, group->mont, ctx);
  141. }
  142. int ec_GFp_mont_field_decode(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a,
  143. BN_CTX *ctx) {
  144. if (group->mont == NULL) {
  145. OPENSSL_PUT_ERROR(EC, EC_R_NOT_INITIALIZED);
  146. return 0;
  147. }
  148. return BN_from_montgomery(r, a, group->mont, ctx);
  149. }
  150. static int ec_GFp_mont_point_get_affine_coordinates(const EC_GROUP *group,
  151. const EC_POINT *point,
  152. BIGNUM *x, BIGNUM *y,
  153. BN_CTX *ctx) {
  154. if (EC_POINT_is_at_infinity(group, point)) {
  155. OPENSSL_PUT_ERROR(EC, EC_R_POINT_AT_INFINITY);
  156. return 0;
  157. }
  158. BN_CTX *new_ctx = NULL;
  159. if (ctx == NULL) {
  160. ctx = new_ctx = BN_CTX_new();
  161. if (ctx == NULL) {
  162. return 0;
  163. }
  164. }
  165. int ret = 0;
  166. BN_CTX_start(ctx);
  167. if (BN_cmp(&point->Z, &group->one) == 0) {
  168. // |point| is already affine.
  169. if (x != NULL && !BN_from_montgomery(x, &point->X, group->mont, ctx)) {
  170. goto err;
  171. }
  172. if (y != NULL && !BN_from_montgomery(y, &point->Y, group->mont, ctx)) {
  173. goto err;
  174. }
  175. } else {
  176. // transform (X, Y, Z) into (x, y) := (X/Z^2, Y/Z^3)
  177. BIGNUM *Z_1 = BN_CTX_get(ctx);
  178. BIGNUM *Z_2 = BN_CTX_get(ctx);
  179. BIGNUM *Z_3 = BN_CTX_get(ctx);
  180. if (Z_1 == NULL ||
  181. Z_2 == NULL ||
  182. Z_3 == NULL) {
  183. goto err;
  184. }
  185. // The straightforward way to calculate the inverse of a Montgomery-encoded
  186. // value where the result is Montgomery-encoded is:
  187. //
  188. // |BN_from_montgomery| + invert + |BN_to_montgomery|.
  189. //
  190. // This is equivalent, but more efficient, because |BN_from_montgomery|
  191. // is more efficient (at least in theory) than |BN_to_montgomery|, since it
  192. // doesn't have to do the multiplication before the reduction.
  193. //
  194. // Use Fermat's Little Theorem instead of |BN_mod_inverse_odd| since this
  195. // inversion may be done as the final step of private key operations.
  196. // Unfortunately, this is suboptimal for ECDSA verification.
  197. if (!BN_from_montgomery(Z_1, &point->Z, group->mont, ctx) ||
  198. !BN_from_montgomery(Z_1, Z_1, group->mont, ctx) ||
  199. !bn_mod_inverse_prime(Z_1, Z_1, &group->field, ctx, group->mont)) {
  200. goto err;
  201. }
  202. if (!BN_mod_mul_montgomery(Z_2, Z_1, Z_1, group->mont, ctx)) {
  203. goto err;
  204. }
  205. // Instead of using |BN_from_montgomery| to convert the |x| coordinate
  206. // and then calling |BN_from_montgomery| again to convert the |y|
  207. // coordinate below, convert the common factor |Z_2| once now, saving one
  208. // reduction.
  209. if (!BN_from_montgomery(Z_2, Z_2, group->mont, ctx)) {
  210. goto err;
  211. }
  212. if (x != NULL) {
  213. if (!BN_mod_mul_montgomery(x, &point->X, Z_2, group->mont, ctx)) {
  214. goto err;
  215. }
  216. }
  217. if (y != NULL) {
  218. if (!BN_mod_mul_montgomery(Z_3, Z_2, Z_1, group->mont, ctx) ||
  219. !BN_mod_mul_montgomery(y, &point->Y, Z_3, group->mont, ctx)) {
  220. goto err;
  221. }
  222. }
  223. }
  224. ret = 1;
  225. err:
  226. BN_CTX_end(ctx);
  227. BN_CTX_free(new_ctx);
  228. return ret;
  229. }
  230. DEFINE_METHOD_FUNCTION(EC_METHOD, EC_GFp_mont_method) {
  231. out->group_init = ec_GFp_mont_group_init;
  232. out->group_finish = ec_GFp_mont_group_finish;
  233. out->group_set_curve = ec_GFp_mont_group_set_curve;
  234. out->point_get_affine_coordinates = ec_GFp_mont_point_get_affine_coordinates;
  235. out->mul = ec_wNAF_mul /* XXX: Not constant time. */;
  236. out->field_mul = ec_GFp_mont_field_mul;
  237. out->field_sqr = ec_GFp_mont_field_sqr;
  238. out->field_encode = ec_GFp_mont_field_encode;
  239. out->field_decode = ec_GFp_mont_field_decode;
  240. }