tls_cbc.c 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524
  1. /* ====================================================================
  2. * Copyright (c) 2012 The OpenSSL Project. All rights reserved.
  3. *
  4. * Redistribution and use in source and binary forms, with or without
  5. * modification, are permitted provided that the following conditions
  6. * are met:
  7. *
  8. * 1. Redistributions of source code must retain the above copyright
  9. * notice, this list of conditions and the following disclaimer.
  10. *
  11. * 2. Redistributions in binary form must reproduce the above copyright
  12. * notice, this list of conditions and the following disclaimer in
  13. * the documentation and/or other materials provided with the
  14. * distribution.
  15. *
  16. * 3. All advertising materials mentioning features or use of this
  17. * software must display the following acknowledgment:
  18. * "This product includes software developed by the OpenSSL Project
  19. * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
  20. *
  21. * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
  22. * endorse or promote products derived from this software without
  23. * prior written permission. For written permission, please contact
  24. * openssl-core@openssl.org.
  25. *
  26. * 5. Products derived from this software may not be called "OpenSSL"
  27. * nor may "OpenSSL" appear in their names without prior written
  28. * permission of the OpenSSL Project.
  29. *
  30. * 6. Redistributions of any form whatsoever must retain the following
  31. * acknowledgment:
  32. * "This product includes software developed by the OpenSSL Project
  33. * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
  34. *
  35. * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
  36. * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  37. * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
  38. * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
  39. * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  40. * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
  41. * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
  42. * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
  43. * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
  44. * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
  45. * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
  46. * OF THE POSSIBILITY OF SUCH DAMAGE.
  47. * ====================================================================
  48. *
  49. * This product includes cryptographic software written by Eric Young
  50. * (eay@cryptsoft.com). This product includes software written by Tim
  51. * Hudson (tjh@cryptsoft.com). */
  52. #include <assert.h>
  53. #include <string.h>
  54. #include <openssl/digest.h>
  55. #include <openssl/obj.h>
  56. #include <openssl/sha.h>
  57. #include "../internal.h"
  58. /* TODO(davidben): unsigned should be size_t. The various constant_time
  59. * functions need to be switched to size_t. */
  60. /* MAX_HASH_BIT_COUNT_BYTES is the maximum number of bytes in the hash's length
  61. * field. (SHA-384/512 have 128-bit length.) */
  62. #define MAX_HASH_BIT_COUNT_BYTES 16
  63. /* MAX_HASH_BLOCK_SIZE is the maximum hash block size that we'll support.
  64. * Currently SHA-384/512 has a 128-byte block size and that's the largest
  65. * supported by TLS.) */
  66. #define MAX_HASH_BLOCK_SIZE 128
  67. int EVP_tls_cbc_remove_padding(unsigned *out_len,
  68. const uint8_t *in, unsigned in_len,
  69. unsigned block_size, unsigned mac_size) {
  70. unsigned padding_length, good, to_check, i;
  71. const unsigned overhead = 1 /* padding length byte */ + mac_size;
  72. /* These lengths are all public so we can test them in non-constant time. */
  73. if (overhead > in_len) {
  74. return 0;
  75. }
  76. padding_length = in[in_len - 1];
  77. good = constant_time_ge(in_len, overhead + padding_length);
  78. /* The padding consists of a length byte at the end of the record and
  79. * then that many bytes of padding, all with the same value as the
  80. * length byte. Thus, with the length byte included, there are i+1
  81. * bytes of padding.
  82. *
  83. * We can't check just |padding_length+1| bytes because that leaks
  84. * decrypted information. Therefore we always have to check the maximum
  85. * amount of padding possible. (Again, the length of the record is
  86. * public information so we can use it.) */
  87. to_check = 256; /* maximum amount of padding, inc length byte. */
  88. if (to_check > in_len) {
  89. to_check = in_len;
  90. }
  91. for (i = 0; i < to_check; i++) {
  92. uint8_t mask = constant_time_ge_8(padding_length, i);
  93. uint8_t b = in[in_len - 1 - i];
  94. /* The final |padding_length+1| bytes should all have the value
  95. * |padding_length|. Therefore the XOR should be zero. */
  96. good &= ~(mask & (padding_length ^ b));
  97. }
  98. /* If any of the final |padding_length+1| bytes had the wrong value,
  99. * one or more of the lower eight bits of |good| will be cleared. */
  100. good = constant_time_eq(0xff, good & 0xff);
  101. /* Always treat |padding_length| as zero on error. If, assuming block size of
  102. * 16, a padding of [<15 arbitrary bytes> 15] treated |padding_length| as 16
  103. * and returned -1, distinguishing good MAC and bad padding from bad MAC and
  104. * bad padding would give POODLE's padding oracle. */
  105. padding_length = good & (padding_length + 1);
  106. *out_len = in_len - padding_length;
  107. return constant_time_select_int(good, 1, -1);
  108. }
  109. /* If CBC_MAC_ROTATE_IN_PLACE is defined then EVP_tls_cbc_copy_mac is performed
  110. * with variable accesses in a 64-byte-aligned buffer. Assuming that this fits
  111. * into a single or pair of cache-lines, then the variable memory accesses don't
  112. * actually affect the timing. CPUs with smaller cache-lines [if any] are not
  113. * multi-core and are not considered vulnerable to cache-timing attacks. */
  114. #define CBC_MAC_ROTATE_IN_PLACE
  115. void EVP_tls_cbc_copy_mac(uint8_t *out, unsigned md_size,
  116. const uint8_t *in, unsigned in_len,
  117. unsigned orig_len) {
  118. #if defined(CBC_MAC_ROTATE_IN_PLACE)
  119. uint8_t rotated_mac_buf[64 + EVP_MAX_MD_SIZE];
  120. uint8_t *rotated_mac;
  121. #else
  122. uint8_t rotated_mac[EVP_MAX_MD_SIZE];
  123. #endif
  124. /* mac_end is the index of |in| just after the end of the MAC. */
  125. unsigned mac_end = in_len;
  126. unsigned mac_start = mac_end - md_size;
  127. /* scan_start contains the number of bytes that we can ignore because
  128. * the MAC's position can only vary by 255 bytes. */
  129. unsigned scan_start = 0;
  130. unsigned i, j;
  131. unsigned rotate_offset;
  132. assert(orig_len >= in_len);
  133. assert(in_len >= md_size);
  134. assert(md_size <= EVP_MAX_MD_SIZE);
  135. #if defined(CBC_MAC_ROTATE_IN_PLACE)
  136. rotated_mac = rotated_mac_buf + ((0 - (size_t)rotated_mac_buf) & 63);
  137. #endif
  138. /* This information is public so it's safe to branch based on it. */
  139. if (orig_len > md_size + 255 + 1) {
  140. scan_start = orig_len - (md_size + 255 + 1);
  141. }
  142. /* Ideally the next statement would be:
  143. *
  144. * rotate_offset = (mac_start - scan_start) % md_size;
  145. *
  146. * However, division is not a constant-time operation (at least on Intel
  147. * chips). Thus we enumerate the possible values of md_size and handle each
  148. * separately. The value of |md_size| is public information (it's determined
  149. * by the cipher suite in the ServerHello) so our timing can vary based on
  150. * its value. */
  151. rotate_offset = mac_start - scan_start;
  152. /* rotate_offset can be, at most, 255 (bytes of padding) + 1 (padding length)
  153. * + md_size = 256 + 48 (since SHA-384 is the largest hash) = 304. */
  154. assert(rotate_offset <= 304);
  155. if (md_size == 16) {
  156. rotate_offset &= 15;
  157. } else if (md_size == 20) {
  158. /* 1/20 is approximated as 25/512 and then Barrett reduction is used.
  159. * Analytically, this is correct for 0 <= rotate_offset <= 853. */
  160. unsigned q = (rotate_offset * 25) >> 9;
  161. rotate_offset -= q * 20;
  162. rotate_offset -=
  163. constant_time_select(constant_time_ge(rotate_offset, 20), 20, 0);
  164. } else if (md_size == 32) {
  165. rotate_offset &= 31;
  166. } else if (md_size == 48) {
  167. /* 1/48 is approximated as 10/512 and then Barrett reduction is used.
  168. * Analytically, this is correct for 0 <= rotate_offset <= 768. */
  169. unsigned q = (rotate_offset * 10) >> 9;
  170. rotate_offset -= q * 48;
  171. rotate_offset -=
  172. constant_time_select(constant_time_ge(rotate_offset, 48), 48, 0);
  173. } else {
  174. /* This should be impossible therefore this path doesn't run in constant
  175. * time. */
  176. assert(0);
  177. rotate_offset = rotate_offset % md_size;
  178. }
  179. memset(rotated_mac, 0, md_size);
  180. for (i = scan_start, j = 0; i < orig_len; i++) {
  181. uint8_t mac_started = constant_time_ge_8(i, mac_start);
  182. uint8_t mac_ended = constant_time_ge_8(i, mac_end);
  183. uint8_t b = in[i];
  184. rotated_mac[j++] |= b & mac_started & ~mac_ended;
  185. j &= constant_time_lt(j, md_size);
  186. }
  187. /* Now rotate the MAC */
  188. #if defined(CBC_MAC_ROTATE_IN_PLACE)
  189. j = 0;
  190. for (i = 0; i < md_size; i++) {
  191. /* in case cache-line is 32 bytes, touch second line */
  192. ((volatile uint8_t *)rotated_mac)[rotate_offset ^ 32];
  193. out[j++] = rotated_mac[rotate_offset++];
  194. rotate_offset &= constant_time_lt(rotate_offset, md_size);
  195. }
  196. #else
  197. memset(out, 0, md_size);
  198. rotate_offset = md_size - rotate_offset;
  199. rotate_offset &= constant_time_lt(rotate_offset, md_size);
  200. for (i = 0; i < md_size; i++) {
  201. for (j = 0; j < md_size; j++) {
  202. out[j] |= rotated_mac[i] & constant_time_eq_8(j, rotate_offset);
  203. }
  204. rotate_offset++;
  205. rotate_offset &= constant_time_lt(rotate_offset, md_size);
  206. }
  207. #endif
  208. }
  209. /* u32toBE serialises an unsigned, 32-bit number (n) as four bytes at (p) in
  210. * big-endian order. The value of p is advanced by four. */
  211. #define u32toBE(n, p) \
  212. (*((p)++)=(uint8_t)(n>>24), \
  213. *((p)++)=(uint8_t)(n>>16), \
  214. *((p)++)=(uint8_t)(n>>8), \
  215. *((p)++)=(uint8_t)(n))
  216. /* u64toBE serialises an unsigned, 64-bit number (n) as eight bytes at (p) in
  217. * big-endian order. The value of p is advanced by eight. */
  218. #define u64toBE(n, p) \
  219. (*((p)++)=(uint8_t)(n>>56), \
  220. *((p)++)=(uint8_t)(n>>48), \
  221. *((p)++)=(uint8_t)(n>>40), \
  222. *((p)++)=(uint8_t)(n>>32), \
  223. *((p)++)=(uint8_t)(n>>24), \
  224. *((p)++)=(uint8_t)(n>>16), \
  225. *((p)++)=(uint8_t)(n>>8), \
  226. *((p)++)=(uint8_t)(n))
  227. /* These functions serialize the state of a hash and thus perform the standard
  228. * "final" operation without adding the padding and length that such a function
  229. * typically does. */
  230. static void tls1_sha1_final_raw(void *ctx, uint8_t *md_out) {
  231. SHA_CTX *sha1 = ctx;
  232. u32toBE(sha1->h[0], md_out);
  233. u32toBE(sha1->h[1], md_out);
  234. u32toBE(sha1->h[2], md_out);
  235. u32toBE(sha1->h[3], md_out);
  236. u32toBE(sha1->h[4], md_out);
  237. }
  238. #define LARGEST_DIGEST_CTX SHA_CTX
  239. static void tls1_sha256_final_raw(void *ctx, uint8_t *md_out) {
  240. SHA256_CTX *sha256 = ctx;
  241. unsigned i;
  242. for (i = 0; i < 8; i++) {
  243. u32toBE(sha256->h[i], md_out);
  244. }
  245. }
  246. #undef LARGEST_DIGEST_CTX
  247. #define LARGEST_DIGEST_CTX SHA256_CTX
  248. static void tls1_sha512_final_raw(void *ctx, uint8_t *md_out) {
  249. SHA512_CTX *sha512 = ctx;
  250. unsigned i;
  251. for (i = 0; i < 8; i++) {
  252. u64toBE(sha512->h[i], md_out);
  253. }
  254. }
  255. #undef LARGEST_DIGEST_CTX
  256. #define LARGEST_DIGEST_CTX SHA512_CTX
  257. int EVP_tls_cbc_record_digest_supported(const EVP_MD *md) {
  258. switch (EVP_MD_type(md)) {
  259. case NID_sha1:
  260. case NID_sha256:
  261. case NID_sha384:
  262. return 1;
  263. default:
  264. return 0;
  265. }
  266. }
  267. int EVP_tls_cbc_digest_record(const EVP_MD *md, uint8_t *md_out,
  268. size_t *md_out_size, const uint8_t header[13],
  269. const uint8_t *data, size_t data_plus_mac_size,
  270. size_t data_plus_mac_plus_padding_size,
  271. const uint8_t *mac_secret,
  272. unsigned mac_secret_length) {
  273. union {
  274. double align;
  275. uint8_t c[sizeof(LARGEST_DIGEST_CTX)];
  276. } md_state;
  277. void (*md_final_raw)(void *ctx, uint8_t *md_out);
  278. void (*md_transform)(void *ctx, const uint8_t *block);
  279. unsigned md_size, md_block_size = 64;
  280. unsigned len, max_mac_bytes, num_blocks, num_starting_blocks, k,
  281. mac_end_offset, c, index_a, index_b;
  282. unsigned int bits; /* at most 18 bits */
  283. uint8_t length_bytes[MAX_HASH_BIT_COUNT_BYTES];
  284. /* hmac_pad is the masked HMAC key. */
  285. uint8_t hmac_pad[MAX_HASH_BLOCK_SIZE];
  286. uint8_t first_block[MAX_HASH_BLOCK_SIZE];
  287. uint8_t mac_out[EVP_MAX_MD_SIZE];
  288. unsigned i, j, md_out_size_u;
  289. EVP_MD_CTX md_ctx;
  290. /* mdLengthSize is the number of bytes in the length field that terminates
  291. * the hash. */
  292. unsigned md_length_size = 8;
  293. /* This is a, hopefully redundant, check that allows us to forget about
  294. * many possible overflows later in this function. */
  295. assert(data_plus_mac_plus_padding_size < 1024 * 1024);
  296. switch (EVP_MD_type(md)) {
  297. case NID_sha1:
  298. SHA1_Init((SHA_CTX *)md_state.c);
  299. md_final_raw = tls1_sha1_final_raw;
  300. md_transform =
  301. (void (*)(void *ctx, const uint8_t *block))SHA1_Transform;
  302. md_size = 20;
  303. break;
  304. case NID_sha256:
  305. SHA256_Init((SHA256_CTX *)md_state.c);
  306. md_final_raw = tls1_sha256_final_raw;
  307. md_transform =
  308. (void (*)(void *ctx, const uint8_t *block))SHA256_Transform;
  309. md_size = 32;
  310. break;
  311. case NID_sha384:
  312. SHA384_Init((SHA512_CTX *)md_state.c);
  313. md_final_raw = tls1_sha512_final_raw;
  314. md_transform =
  315. (void (*)(void *ctx, const uint8_t *block))SHA512_Transform;
  316. md_size = 384 / 8;
  317. md_block_size = 128;
  318. md_length_size = 16;
  319. break;
  320. default:
  321. /* EVP_tls_cbc_record_digest_supported should have been called first to
  322. * check that the hash function is supported. */
  323. assert(0);
  324. *md_out_size = 0;
  325. return 0;
  326. }
  327. assert(md_length_size <= MAX_HASH_BIT_COUNT_BYTES);
  328. assert(md_block_size <= MAX_HASH_BLOCK_SIZE);
  329. assert(md_size <= EVP_MAX_MD_SIZE);
  330. static const unsigned kHeaderLength = 13;
  331. /* kVarianceBlocks is the number of blocks of the hash that we have to
  332. * calculate in constant time because they could be altered by the
  333. * padding value.
  334. *
  335. * TLSv1 has MACs up to 48 bytes long (SHA-384) and the padding is not
  336. * required to be minimal. Therefore we say that the final six blocks
  337. * can vary based on the padding. */
  338. static const unsigned kVarianceBlocks = 6;
  339. /* From now on we're dealing with the MAC, which conceptually has 13
  340. * bytes of `header' before the start of the data. */
  341. len = data_plus_mac_plus_padding_size + kHeaderLength;
  342. /* max_mac_bytes contains the maximum bytes of bytes in the MAC, including
  343. * |header|, assuming that there's no padding. */
  344. max_mac_bytes = len - md_size - 1;
  345. /* num_blocks is the maximum number of hash blocks. */
  346. num_blocks =
  347. (max_mac_bytes + 1 + md_length_size + md_block_size - 1) / md_block_size;
  348. /* In order to calculate the MAC in constant time we have to handle
  349. * the final blocks specially because the padding value could cause the
  350. * end to appear somewhere in the final |kVarianceBlocks| blocks and we
  351. * can't leak where. However, |num_starting_blocks| worth of data can
  352. * be hashed right away because no padding value can affect whether
  353. * they are plaintext. */
  354. num_starting_blocks = 0;
  355. /* k is the starting byte offset into the conceptual header||data where
  356. * we start processing. */
  357. k = 0;
  358. /* mac_end_offset is the index just past the end of the data to be
  359. * MACed. */
  360. mac_end_offset = data_plus_mac_size + kHeaderLength - md_size;
  361. /* c is the index of the 0x80 byte in the final hash block that
  362. * contains application data. */
  363. c = mac_end_offset % md_block_size;
  364. /* index_a is the hash block number that contains the 0x80 terminating
  365. * value. */
  366. index_a = mac_end_offset / md_block_size;
  367. /* index_b is the hash block number that contains the 64-bit hash
  368. * length, in bits. */
  369. index_b = (mac_end_offset + md_length_size) / md_block_size;
  370. /* bits is the hash-length in bits. It includes the additional hash
  371. * block for the masked HMAC key. */
  372. if (num_blocks > kVarianceBlocks) {
  373. num_starting_blocks = num_blocks - kVarianceBlocks;
  374. k = md_block_size * num_starting_blocks;
  375. }
  376. bits = 8 * mac_end_offset;
  377. /* Compute the initial HMAC block. */
  378. bits += 8 * md_block_size;
  379. memset(hmac_pad, 0, md_block_size);
  380. assert(mac_secret_length <= sizeof(hmac_pad));
  381. memcpy(hmac_pad, mac_secret, mac_secret_length);
  382. for (i = 0; i < md_block_size; i++) {
  383. hmac_pad[i] ^= 0x36;
  384. }
  385. md_transform(md_state.c, hmac_pad);
  386. memset(length_bytes, 0, md_length_size - 4);
  387. length_bytes[md_length_size - 4] = (uint8_t)(bits >> 24);
  388. length_bytes[md_length_size - 3] = (uint8_t)(bits >> 16);
  389. length_bytes[md_length_size - 2] = (uint8_t)(bits >> 8);
  390. length_bytes[md_length_size - 1] = (uint8_t)bits;
  391. if (k > 0) {
  392. /* k is a multiple of md_block_size. */
  393. memcpy(first_block, header, 13);
  394. memcpy(first_block + 13, data, md_block_size - 13);
  395. md_transform(md_state.c, first_block);
  396. for (i = 1; i < k / md_block_size; i++) {
  397. md_transform(md_state.c, data + md_block_size * i - 13);
  398. }
  399. }
  400. memset(mac_out, 0, sizeof(mac_out));
  401. /* We now process the final hash blocks. For each block, we construct
  402. * it in constant time. If the |i==index_a| then we'll include the 0x80
  403. * bytes and zero pad etc. For each block we selectively copy it, in
  404. * constant time, to |mac_out|. */
  405. for (i = num_starting_blocks; i <= num_starting_blocks + kVarianceBlocks;
  406. i++) {
  407. uint8_t block[MAX_HASH_BLOCK_SIZE];
  408. uint8_t is_block_a = constant_time_eq_8(i, index_a);
  409. uint8_t is_block_b = constant_time_eq_8(i, index_b);
  410. for (j = 0; j < md_block_size; j++) {
  411. uint8_t b = 0, is_past_c, is_past_cp1;
  412. if (k < kHeaderLength) {
  413. b = header[k];
  414. } else if (k < data_plus_mac_plus_padding_size + kHeaderLength) {
  415. b = data[k - kHeaderLength];
  416. }
  417. k++;
  418. is_past_c = is_block_a & constant_time_ge_8(j, c);
  419. is_past_cp1 = is_block_a & constant_time_ge_8(j, c + 1);
  420. /* If this is the block containing the end of the
  421. * application data, and we are at the offset for the
  422. * 0x80 value, then overwrite b with 0x80. */
  423. b = constant_time_select_8(is_past_c, 0x80, b);
  424. /* If this the the block containing the end of the
  425. * application data and we're past the 0x80 value then
  426. * just write zero. */
  427. b = b & ~is_past_cp1;
  428. /* If this is index_b (the final block), but not
  429. * index_a (the end of the data), then the 64-bit
  430. * length didn't fit into index_a and we're having to
  431. * add an extra block of zeros. */
  432. b &= ~is_block_b | is_block_a;
  433. /* The final bytes of one of the blocks contains the
  434. * length. */
  435. if (j >= md_block_size - md_length_size) {
  436. /* If this is index_b, write a length byte. */
  437. b = constant_time_select_8(
  438. is_block_b, length_bytes[j - (md_block_size - md_length_size)], b);
  439. }
  440. block[j] = b;
  441. }
  442. md_transform(md_state.c, block);
  443. md_final_raw(md_state.c, block);
  444. /* If this is index_b, copy the hash value to |mac_out|. */
  445. for (j = 0; j < md_size; j++) {
  446. mac_out[j] |= block[j] & is_block_b;
  447. }
  448. }
  449. EVP_MD_CTX_init(&md_ctx);
  450. if (!EVP_DigestInit_ex(&md_ctx, md, NULL /* engine */)) {
  451. EVP_MD_CTX_cleanup(&md_ctx);
  452. return 0;
  453. }
  454. /* Complete the HMAC in the standard manner. */
  455. for (i = 0; i < md_block_size; i++) {
  456. hmac_pad[i] ^= 0x6a;
  457. }
  458. EVP_DigestUpdate(&md_ctx, hmac_pad, md_block_size);
  459. EVP_DigestUpdate(&md_ctx, mac_out, md_size);
  460. EVP_DigestFinal(&md_ctx, md_out, &md_out_size_u);
  461. *md_out_size = md_out_size_u;
  462. EVP_MD_CTX_cleanup(&md_ctx);
  463. return 1;
  464. }