wnaf.c 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458
  1. /* Originally written by Bodo Moeller for the OpenSSL project.
  2. * ====================================================================
  3. * Copyright (c) 1998-2005 The OpenSSL Project. All rights reserved.
  4. *
  5. * Redistribution and use in source and binary forms, with or without
  6. * modification, are permitted provided that the following conditions
  7. * are met:
  8. *
  9. * 1. Redistributions of source code must retain the above copyright
  10. * notice, this list of conditions and the following disclaimer.
  11. *
  12. * 2. Redistributions in binary form must reproduce the above copyright
  13. * notice, this list of conditions and the following disclaimer in
  14. * the documentation and/or other materials provided with the
  15. * distribution.
  16. *
  17. * 3. All advertising materials mentioning features or use of this
  18. * software must display the following acknowledgment:
  19. * "This product includes software developed by the OpenSSL Project
  20. * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
  21. *
  22. * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
  23. * endorse or promote products derived from this software without
  24. * prior written permission. For written permission, please contact
  25. * openssl-core@openssl.org.
  26. *
  27. * 5. Products derived from this software may not be called "OpenSSL"
  28. * nor may "OpenSSL" appear in their names without prior written
  29. * permission of the OpenSSL Project.
  30. *
  31. * 6. Redistributions of any form whatsoever must retain the following
  32. * acknowledgment:
  33. * "This product includes software developed by the OpenSSL Project
  34. * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
  35. *
  36. * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
  37. * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  38. * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
  39. * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
  40. * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  41. * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
  42. * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
  43. * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
  44. * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
  45. * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
  46. * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
  47. * OF THE POSSIBILITY OF SUCH DAMAGE.
  48. * ====================================================================
  49. *
  50. * This product includes cryptographic software written by Eric Young
  51. * (eay@cryptsoft.com). This product includes software written by Tim
  52. * Hudson (tjh@cryptsoft.com).
  53. *
  54. */
  55. /* ====================================================================
  56. * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
  57. *
  58. * Portions of the attached software ("Contribution") are developed by
  59. * SUN MICROSYSTEMS, INC., and are contributed to the OpenSSL project.
  60. *
  61. * The Contribution is licensed pursuant to the OpenSSL open source
  62. * license provided above.
  63. *
  64. * The elliptic curve binary polynomial software is originally written by
  65. * Sheueling Chang Shantz and Douglas Stebila of Sun Microsystems
  66. * Laboratories. */
  67. #include <openssl/ec.h>
  68. #include <string.h>
  69. #include <openssl/bn.h>
  70. #include <openssl/err.h>
  71. #include <openssl/mem.h>
  72. #include <openssl/thread.h>
  73. #include "internal.h"
  74. #include "../internal.h"
  75. /* This file implements the wNAF-based interleaving multi-exponentation method
  76. * (<URL:http://www.informatik.tu-darmstadt.de/TI/Mitarbeiter/moeller.html#multiexp>);
  77. * */
  78. /* Determine the modified width-(w+1) Non-Adjacent Form (wNAF) of 'scalar'.
  79. * This is an array r[] of values that are either zero or odd with an
  80. * absolute value less than 2^w satisfying
  81. * scalar = \sum_j r[j]*2^j
  82. * where at most one of any w+1 consecutive digits is non-zero
  83. * with the exception that the most significant digit may be only
  84. * w-1 zeros away from that next non-zero digit.
  85. */
  86. static int8_t *compute_wNAF(const BIGNUM *scalar, int w, size_t *ret_len) {
  87. int window_val;
  88. int ok = 0;
  89. int8_t *r = NULL;
  90. int sign = 1;
  91. int bit, next_bit, mask;
  92. size_t len = 0, j;
  93. if (BN_is_zero(scalar)) {
  94. r = OPENSSL_malloc(1);
  95. if (!r) {
  96. OPENSSL_PUT_ERROR(EC, ERR_R_MALLOC_FAILURE);
  97. goto err;
  98. }
  99. r[0] = 0;
  100. *ret_len = 1;
  101. return r;
  102. }
  103. /* 'int8_t' can represent integers with absolute values less than 2^7. */
  104. if (w <= 0 || w > 7) {
  105. OPENSSL_PUT_ERROR(EC, ERR_R_INTERNAL_ERROR);
  106. goto err;
  107. }
  108. bit = 1 << w; /* at most 128 */
  109. next_bit = bit << 1; /* at most 256 */
  110. mask = next_bit - 1; /* at most 255 */
  111. if (BN_is_negative(scalar)) {
  112. sign = -1;
  113. }
  114. if (scalar->d == NULL || scalar->top == 0) {
  115. OPENSSL_PUT_ERROR(EC, ERR_R_INTERNAL_ERROR);
  116. goto err;
  117. }
  118. len = BN_num_bits(scalar);
  119. /* The modified wNAF may be one digit longer than binary representation
  120. * (*ret_len will be set to the actual length, i.e. at most
  121. * BN_num_bits(scalar) + 1). */
  122. r = OPENSSL_malloc(len + 1);
  123. if (r == NULL) {
  124. OPENSSL_PUT_ERROR(EC, ERR_R_MALLOC_FAILURE);
  125. goto err;
  126. }
  127. window_val = scalar->d[0] & mask;
  128. j = 0;
  129. /* If j+w+1 >= len, window_val will not increase. */
  130. while (window_val != 0 || j + w + 1 < len) {
  131. int digit = 0;
  132. /* 0 <= window_val <= 2^(w+1) */
  133. if (window_val & 1) {
  134. /* 0 < window_val < 2^(w+1) */
  135. if (window_val & bit) {
  136. digit = window_val - next_bit; /* -2^w < digit < 0 */
  137. #if 1 /* modified wNAF */
  138. if (j + w + 1 >= len) {
  139. /* special case for generating modified wNAFs:
  140. * no new bits will be added into window_val,
  141. * so using a positive digit here will decrease
  142. * the total length of the representation */
  143. digit = window_val & (mask >> 1); /* 0 < digit < 2^w */
  144. }
  145. #endif
  146. } else {
  147. digit = window_val; /* 0 < digit < 2^w */
  148. }
  149. if (digit <= -bit || digit >= bit || !(digit & 1)) {
  150. OPENSSL_PUT_ERROR(EC, ERR_R_INTERNAL_ERROR);
  151. goto err;
  152. }
  153. window_val -= digit;
  154. /* Now window_val is 0 or 2^(w+1) in standard wNAF generation;
  155. * for modified window NAFs, it may also be 2^w. */
  156. if (window_val != 0 && window_val != next_bit && window_val != bit) {
  157. OPENSSL_PUT_ERROR(EC, ERR_R_INTERNAL_ERROR);
  158. goto err;
  159. }
  160. }
  161. r[j++] = sign * digit;
  162. window_val >>= 1;
  163. window_val += bit * BN_is_bit_set(scalar, j + w);
  164. if (window_val > next_bit) {
  165. OPENSSL_PUT_ERROR(EC, ERR_R_INTERNAL_ERROR);
  166. goto err;
  167. }
  168. }
  169. if (j > len + 1) {
  170. OPENSSL_PUT_ERROR(EC, ERR_R_INTERNAL_ERROR);
  171. goto err;
  172. }
  173. len = j;
  174. ok = 1;
  175. err:
  176. if (!ok) {
  177. OPENSSL_free(r);
  178. r = NULL;
  179. }
  180. if (ok) {
  181. *ret_len = len;
  182. }
  183. return r;
  184. }
  185. /* TODO: table should be optimised for the wNAF-based implementation,
  186. * sometimes smaller windows will give better performance
  187. * (thus the boundaries should be increased)
  188. */
  189. static size_t window_bits_for_scalar_size(size_t b) {
  190. if (b >= 2000) {
  191. return 6;
  192. }
  193. if (b >= 800) {
  194. return 5;
  195. }
  196. if (b >= 300) {
  197. return 4;
  198. }
  199. if (b >= 70) {
  200. return 3;
  201. }
  202. if (b >= 20) {
  203. return 2;
  204. }
  205. return 1;
  206. }
  207. int ec_wNAF_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *g_scalar,
  208. const EC_POINT *p, const BIGNUM *p_scalar, BN_CTX *ctx) {
  209. BN_CTX *new_ctx = NULL;
  210. const EC_POINT *generator = NULL;
  211. EC_POINT *tmp = NULL;
  212. size_t total_num = 0;
  213. size_t i, j;
  214. int k;
  215. int r_is_inverted = 0;
  216. int r_is_at_infinity = 1;
  217. size_t *wsize = NULL; /* individual window sizes */
  218. int8_t **wNAF = NULL; /* individual wNAFs */
  219. size_t *wNAF_len = NULL;
  220. size_t max_len = 0;
  221. size_t num_val = 0;
  222. EC_POINT **val = NULL; /* precomputation */
  223. EC_POINT **v;
  224. EC_POINT ***val_sub = NULL; /* pointers to sub-arrays of 'val' */
  225. int ret = 0;
  226. if (ctx == NULL) {
  227. ctx = new_ctx = BN_CTX_new();
  228. if (ctx == NULL) {
  229. goto err;
  230. }
  231. }
  232. /* TODO: This function used to take |points| and |scalars| as arrays of
  233. * |num| elements. The code below should be simplified to work in terms of |p|
  234. * and |p_scalar|. */
  235. size_t num = p != NULL ? 1 : 0;
  236. const EC_POINT **points = p != NULL ? &p : NULL;
  237. const BIGNUM **scalars = p != NULL ? &p_scalar : NULL;
  238. total_num = num;
  239. if (g_scalar != NULL) {
  240. generator = EC_GROUP_get0_generator(group);
  241. if (generator == NULL) {
  242. OPENSSL_PUT_ERROR(EC, EC_R_UNDEFINED_GENERATOR);
  243. goto err;
  244. }
  245. ++total_num; /* treat 'g_scalar' like 'num'-th element of 'scalars' */
  246. }
  247. wsize = OPENSSL_malloc(total_num * sizeof(wsize[0]));
  248. wNAF_len = OPENSSL_malloc(total_num * sizeof(wNAF_len[0]));
  249. wNAF = OPENSSL_malloc(total_num * sizeof(wNAF[0]));
  250. val_sub = OPENSSL_malloc(total_num * sizeof(val_sub[0]));
  251. /* Ensure wNAF is initialised in case we end up going to err. */
  252. if (wNAF != NULL) {
  253. OPENSSL_memset(wNAF, 0, total_num * sizeof(wNAF[0]));
  254. }
  255. if (!wsize || !wNAF_len || !wNAF || !val_sub) {
  256. OPENSSL_PUT_ERROR(EC, ERR_R_MALLOC_FAILURE);
  257. goto err;
  258. }
  259. /* num_val will be the total number of temporarily precomputed points */
  260. num_val = 0;
  261. for (i = 0; i < total_num; i++) {
  262. size_t bits;
  263. bits = i < num ? BN_num_bits(scalars[i]) : BN_num_bits(g_scalar);
  264. wsize[i] = window_bits_for_scalar_size(bits);
  265. num_val += (size_t)1 << (wsize[i] - 1);
  266. wNAF[i] =
  267. compute_wNAF((i < num ? scalars[i] : g_scalar), wsize[i], &wNAF_len[i]);
  268. if (wNAF[i] == NULL) {
  269. goto err;
  270. }
  271. if (wNAF_len[i] > max_len) {
  272. max_len = wNAF_len[i];
  273. }
  274. }
  275. /* All points we precompute now go into a single array 'val'. 'val_sub[i]' is
  276. * a pointer to the subarray for the i-th point. */
  277. val = OPENSSL_malloc(num_val * sizeof(val[0]));
  278. if (val == NULL) {
  279. OPENSSL_PUT_ERROR(EC, ERR_R_MALLOC_FAILURE);
  280. goto err;
  281. }
  282. OPENSSL_memset(val, 0, num_val * sizeof(val[0]));
  283. /* allocate points for precomputation */
  284. v = val;
  285. for (i = 0; i < total_num; i++) {
  286. val_sub[i] = v;
  287. for (j = 0; j < ((size_t)1 << (wsize[i] - 1)); j++) {
  288. *v = EC_POINT_new(group);
  289. if (*v == NULL) {
  290. goto err;
  291. }
  292. v++;
  293. }
  294. }
  295. if (!(v == val + num_val)) {
  296. OPENSSL_PUT_ERROR(EC, ERR_R_INTERNAL_ERROR);
  297. goto err;
  298. }
  299. if (!(tmp = EC_POINT_new(group))) {
  300. goto err;
  301. }
  302. /* prepare precomputed values:
  303. * val_sub[i][0] := points[i]
  304. * val_sub[i][1] := 3 * points[i]
  305. * val_sub[i][2] := 5 * points[i]
  306. * ...
  307. */
  308. for (i = 0; i < total_num; i++) {
  309. if (i < num) {
  310. if (!EC_POINT_copy(val_sub[i][0], points[i])) {
  311. goto err;
  312. }
  313. } else if (!EC_POINT_copy(val_sub[i][0], generator)) {
  314. goto err;
  315. }
  316. if (wsize[i] > 1) {
  317. if (!EC_POINT_dbl(group, tmp, val_sub[i][0], ctx)) {
  318. goto err;
  319. }
  320. for (j = 1; j < ((size_t)1 << (wsize[i] - 1)); j++) {
  321. if (!EC_POINT_add(group, val_sub[i][j], val_sub[i][j - 1], tmp, ctx)) {
  322. goto err;
  323. }
  324. }
  325. }
  326. }
  327. #if 1 /* optional; window_bits_for_scalar_size assumes we do this step */
  328. if (!EC_POINTs_make_affine(group, num_val, val, ctx)) {
  329. goto err;
  330. }
  331. #endif
  332. r_is_at_infinity = 1;
  333. for (k = max_len - 1; k >= 0; k--) {
  334. if (!r_is_at_infinity && !EC_POINT_dbl(group, r, r, ctx)) {
  335. goto err;
  336. }
  337. for (i = 0; i < total_num; i++) {
  338. if (wNAF_len[i] > (size_t)k) {
  339. int digit = wNAF[i][k];
  340. int is_neg;
  341. if (digit) {
  342. is_neg = digit < 0;
  343. if (is_neg) {
  344. digit = -digit;
  345. }
  346. if (is_neg != r_is_inverted) {
  347. if (!r_is_at_infinity && !EC_POINT_invert(group, r, ctx)) {
  348. goto err;
  349. }
  350. r_is_inverted = !r_is_inverted;
  351. }
  352. /* digit > 0 */
  353. if (r_is_at_infinity) {
  354. if (!EC_POINT_copy(r, val_sub[i][digit >> 1])) {
  355. goto err;
  356. }
  357. r_is_at_infinity = 0;
  358. } else {
  359. if (!EC_POINT_add(group, r, r, val_sub[i][digit >> 1], ctx)) {
  360. goto err;
  361. }
  362. }
  363. }
  364. }
  365. }
  366. }
  367. if (r_is_at_infinity) {
  368. if (!EC_POINT_set_to_infinity(group, r)) {
  369. goto err;
  370. }
  371. } else if (r_is_inverted && !EC_POINT_invert(group, r, ctx)) {
  372. goto err;
  373. }
  374. ret = 1;
  375. err:
  376. BN_CTX_free(new_ctx);
  377. EC_POINT_free(tmp);
  378. OPENSSL_free(wsize);
  379. OPENSSL_free(wNAF_len);
  380. if (wNAF != NULL) {
  381. for (i = 0; i < total_num; i++) {
  382. OPENSSL_free(wNAF[i]);
  383. }
  384. OPENSSL_free(wNAF);
  385. }
  386. if (val != NULL) {
  387. for (i = 0; i < num_val; i++) {
  388. EC_POINT_clear_free(val[i]);
  389. }
  390. OPENSSL_free(val);
  391. }
  392. OPENSSL_free(val_sub);
  393. return ret;
  394. }