| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118 |
- /* Originally written by Bodo Moeller for the OpenSSL project.
- * ====================================================================
- * Copyright (c) 1998-2005 The OpenSSL Project. All rights reserved.
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions
- * are met:
- *
- * 1. Redistributions of source code must retain the above copyright
- * notice, this list of conditions and the following disclaimer.
- *
- * 2. Redistributions in binary form must reproduce the above copyright
- * notice, this list of conditions and the following disclaimer in
- * the documentation and/or other materials provided with the
- * distribution.
- *
- * 3. All advertising materials mentioning features or use of this
- * software must display the following acknowledgment:
- * "This product includes software developed by the OpenSSL Project
- * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
- *
- * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
- * endorse or promote products derived from this software without
- * prior written permission. For written permission, please contact
- * openssl-core@openssl.org.
- *
- * 5. Products derived from this software may not be called "OpenSSL"
- * nor may "OpenSSL" appear in their names without prior written
- * permission of the OpenSSL Project.
- *
- * 6. Redistributions of any form whatsoever must retain the following
- * acknowledgment:
- * "This product includes software developed by the OpenSSL Project
- * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
- *
- * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
- * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
- * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
- * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
- * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
- * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
- * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
- * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
- * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
- * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
- * OF THE POSSIBILITY OF SUCH DAMAGE.
- * ====================================================================
- *
- * This product includes cryptographic software written by Eric Young
- * (eay@cryptsoft.com). This product includes software written by Tim
- * Hudson (tjh@cryptsoft.com).
- *
- */
- /* ====================================================================
- * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
- *
- * Portions of the attached software ("Contribution") are developed by
- * SUN MICROSYSTEMS, INC., and are contributed to the OpenSSL project.
- *
- * The Contribution is licensed pursuant to the OpenSSL open source
- * license provided above.
- *
- * The elliptic curve binary polynomial software is originally written by
- * Sheueling Chang Shantz and Douglas Stebila of Sun Microsystems
- * Laboratories. */
- #include <openssl/ec.h>
- #include <string.h>
- #include <openssl/bn.h>
- #include <openssl/err.h>
- #include <openssl/mem.h>
- #include "internal.h"
- #include "../internal.h"
- /* Most method functions in this file are designed to work with non-trivial
- * representations of field elements if necessary (see ecp_mont.c): while
- * standard modular addition and subtraction are used, the field_mul and
- * field_sqr methods will be used for multiplication, and field_encode and
- * field_decode (if defined) will be used for converting between
- * representations.
- *
- * Functions here specifically assume that if a non-trivial representation is
- * used, it is a Montgomery representation (i.e. 'encoding' means multiplying
- * by some factor R). */
- int ec_GFp_simple_group_init(EC_GROUP *group) {
- BN_init(&group->field);
- BN_init(&group->a);
- BN_init(&group->b);
- BN_init(&group->one);
- group->a_is_minus3 = 0;
- return 1;
- }
- void ec_GFp_simple_group_finish(EC_GROUP *group) {
- BN_free(&group->field);
- BN_free(&group->a);
- BN_free(&group->b);
- BN_free(&group->one);
- }
- int ec_GFp_simple_group_copy(EC_GROUP *dest, const EC_GROUP *src) {
- if (!BN_copy(&dest->field, &src->field) ||
- !BN_copy(&dest->a, &src->a) ||
- !BN_copy(&dest->b, &src->b) ||
- !BN_copy(&dest->one, &src->one)) {
- return 0;
- }
- dest->a_is_minus3 = src->a_is_minus3;
- return 1;
- }
- int ec_GFp_simple_group_set_curve(EC_GROUP *group, const BIGNUM *p,
- const BIGNUM *a, const BIGNUM *b,
- BN_CTX *ctx) {
- int ret = 0;
- BN_CTX *new_ctx = NULL;
- BIGNUM *tmp_a;
- /* p must be a prime > 3 */
- if (BN_num_bits(p) <= 2 || !BN_is_odd(p)) {
- OPENSSL_PUT_ERROR(EC, EC_R_INVALID_FIELD);
- return 0;
- }
- if (ctx == NULL) {
- ctx = new_ctx = BN_CTX_new();
- if (ctx == NULL) {
- return 0;
- }
- }
- BN_CTX_start(ctx);
- tmp_a = BN_CTX_get(ctx);
- if (tmp_a == NULL) {
- goto err;
- }
- /* group->field */
- if (!BN_copy(&group->field, p)) {
- goto err;
- }
- BN_set_negative(&group->field, 0);
- /* group->a */
- if (!BN_nnmod(tmp_a, a, p, ctx)) {
- goto err;
- }
- if (group->meth->field_encode) {
- if (!group->meth->field_encode(group, &group->a, tmp_a, ctx)) {
- goto err;
- }
- } else if (!BN_copy(&group->a, tmp_a)) {
- goto err;
- }
- /* group->b */
- if (!BN_nnmod(&group->b, b, p, ctx)) {
- goto err;
- }
- if (group->meth->field_encode &&
- !group->meth->field_encode(group, &group->b, &group->b, ctx)) {
- goto err;
- }
- /* group->a_is_minus3 */
- if (!BN_add_word(tmp_a, 3)) {
- goto err;
- }
- group->a_is_minus3 = (0 == BN_cmp(tmp_a, &group->field));
- if (group->meth->field_encode != NULL) {
- if (!group->meth->field_encode(group, &group->one, BN_value_one(), ctx)) {
- goto err;
- }
- } else if (!BN_copy(&group->one, BN_value_one())) {
- goto err;
- }
- ret = 1;
- err:
- BN_CTX_end(ctx);
- BN_CTX_free(new_ctx);
- return ret;
- }
- int ec_GFp_simple_group_get_curve(const EC_GROUP *group, BIGNUM *p, BIGNUM *a,
- BIGNUM *b, BN_CTX *ctx) {
- int ret = 0;
- BN_CTX *new_ctx = NULL;
- if (p != NULL && !BN_copy(p, &group->field)) {
- return 0;
- }
- if (a != NULL || b != NULL) {
- if (group->meth->field_decode) {
- if (ctx == NULL) {
- ctx = new_ctx = BN_CTX_new();
- if (ctx == NULL) {
- return 0;
- }
- }
- if (a != NULL && !group->meth->field_decode(group, a, &group->a, ctx)) {
- goto err;
- }
- if (b != NULL && !group->meth->field_decode(group, b, &group->b, ctx)) {
- goto err;
- }
- } else {
- if (a != NULL && !BN_copy(a, &group->a)) {
- goto err;
- }
- if (b != NULL && !BN_copy(b, &group->b)) {
- goto err;
- }
- }
- }
- ret = 1;
- err:
- BN_CTX_free(new_ctx);
- return ret;
- }
- unsigned ec_GFp_simple_group_get_degree(const EC_GROUP *group) {
- return BN_num_bits(&group->field);
- }
- int ec_GFp_simple_point_init(EC_POINT *point) {
- BN_init(&point->X);
- BN_init(&point->Y);
- BN_init(&point->Z);
- return 1;
- }
- void ec_GFp_simple_point_finish(EC_POINT *point) {
- BN_free(&point->X);
- BN_free(&point->Y);
- BN_free(&point->Z);
- }
- void ec_GFp_simple_point_clear_finish(EC_POINT *point) {
- BN_clear_free(&point->X);
- BN_clear_free(&point->Y);
- BN_clear_free(&point->Z);
- }
- int ec_GFp_simple_point_copy(EC_POINT *dest, const EC_POINT *src) {
- if (!BN_copy(&dest->X, &src->X) ||
- !BN_copy(&dest->Y, &src->Y) ||
- !BN_copy(&dest->Z, &src->Z)) {
- return 0;
- }
- return 1;
- }
- int ec_GFp_simple_point_set_to_infinity(const EC_GROUP *group,
- EC_POINT *point) {
- BN_zero(&point->Z);
- return 1;
- }
- static int set_Jprojective_coordinate_GFp(const EC_GROUP *group, BIGNUM *out,
- const BIGNUM *in, BN_CTX *ctx) {
- if (in == NULL) {
- return 1;
- }
- if (BN_is_negative(in) ||
- BN_cmp(in, &group->field) >= 0) {
- OPENSSL_PUT_ERROR(EC, EC_R_COORDINATES_OUT_OF_RANGE);
- return 0;
- }
- if (group->meth->field_encode) {
- return group->meth->field_encode(group, out, in, ctx);
- }
- return BN_copy(out, in) != NULL;
- }
- int ec_GFp_simple_set_Jprojective_coordinates_GFp(
- const EC_GROUP *group, EC_POINT *point, const BIGNUM *x, const BIGNUM *y,
- const BIGNUM *z, BN_CTX *ctx) {
- BN_CTX *new_ctx = NULL;
- int ret = 0;
- if (ctx == NULL) {
- ctx = new_ctx = BN_CTX_new();
- if (ctx == NULL) {
- return 0;
- }
- }
- if (!set_Jprojective_coordinate_GFp(group, &point->X, x, ctx) ||
- !set_Jprojective_coordinate_GFp(group, &point->Y, y, ctx) ||
- !set_Jprojective_coordinate_GFp(group, &point->Z, z, ctx)) {
- goto err;
- }
- ret = 1;
- err:
- BN_CTX_free(new_ctx);
- return ret;
- }
- int ec_GFp_simple_get_Jprojective_coordinates_GFp(const EC_GROUP *group,
- const EC_POINT *point,
- BIGNUM *x, BIGNUM *y,
- BIGNUM *z, BN_CTX *ctx) {
- BN_CTX *new_ctx = NULL;
- int ret = 0;
- if (group->meth->field_decode != 0) {
- if (ctx == NULL) {
- ctx = new_ctx = BN_CTX_new();
- if (ctx == NULL) {
- return 0;
- }
- }
- if (x != NULL && !group->meth->field_decode(group, x, &point->X, ctx)) {
- goto err;
- }
- if (y != NULL && !group->meth->field_decode(group, y, &point->Y, ctx)) {
- goto err;
- }
- if (z != NULL && !group->meth->field_decode(group, z, &point->Z, ctx)) {
- goto err;
- }
- } else {
- if (x != NULL && !BN_copy(x, &point->X)) {
- goto err;
- }
- if (y != NULL && !BN_copy(y, &point->Y)) {
- goto err;
- }
- if (z != NULL && !BN_copy(z, &point->Z)) {
- goto err;
- }
- }
- ret = 1;
- err:
- BN_CTX_free(new_ctx);
- return ret;
- }
- int ec_GFp_simple_point_set_affine_coordinates(const EC_GROUP *group,
- EC_POINT *point, const BIGNUM *x,
- const BIGNUM *y, BN_CTX *ctx) {
- if (x == NULL || y == NULL) {
- /* unlike for projective coordinates, we do not tolerate this */
- OPENSSL_PUT_ERROR(EC, ERR_R_PASSED_NULL_PARAMETER);
- return 0;
- }
- return ec_point_set_Jprojective_coordinates_GFp(group, point, x, y,
- BN_value_one(), ctx);
- }
- int ec_GFp_simple_add(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a,
- const EC_POINT *b, BN_CTX *ctx) {
- int (*field_mul)(const EC_GROUP *, BIGNUM *, const BIGNUM *, const BIGNUM *,
- BN_CTX *);
- int (*field_sqr)(const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *);
- const BIGNUM *p;
- BN_CTX *new_ctx = NULL;
- BIGNUM *n0, *n1, *n2, *n3, *n4, *n5, *n6;
- int ret = 0;
- if (a == b) {
- return EC_POINT_dbl(group, r, a, ctx);
- }
- if (EC_POINT_is_at_infinity(group, a)) {
- return EC_POINT_copy(r, b);
- }
- if (EC_POINT_is_at_infinity(group, b)) {
- return EC_POINT_copy(r, a);
- }
- field_mul = group->meth->field_mul;
- field_sqr = group->meth->field_sqr;
- p = &group->field;
- if (ctx == NULL) {
- ctx = new_ctx = BN_CTX_new();
- if (ctx == NULL) {
- return 0;
- }
- }
- BN_CTX_start(ctx);
- n0 = BN_CTX_get(ctx);
- n1 = BN_CTX_get(ctx);
- n2 = BN_CTX_get(ctx);
- n3 = BN_CTX_get(ctx);
- n4 = BN_CTX_get(ctx);
- n5 = BN_CTX_get(ctx);
- n6 = BN_CTX_get(ctx);
- if (n6 == NULL) {
- goto end;
- }
- /* Note that in this function we must not read components of 'a' or 'b'
- * once we have written the corresponding components of 'r'.
- * ('r' might be one of 'a' or 'b'.)
- */
- /* n1, n2 */
- int b_Z_is_one = BN_cmp(&b->Z, &group->one) == 0;
- if (b_Z_is_one) {
- if (!BN_copy(n1, &a->X) || !BN_copy(n2, &a->Y)) {
- goto end;
- }
- /* n1 = X_a */
- /* n2 = Y_a */
- } else {
- if (!field_sqr(group, n0, &b->Z, ctx) ||
- !field_mul(group, n1, &a->X, n0, ctx)) {
- goto end;
- }
- /* n1 = X_a * Z_b^2 */
- if (!field_mul(group, n0, n0, &b->Z, ctx) ||
- !field_mul(group, n2, &a->Y, n0, ctx)) {
- goto end;
- }
- /* n2 = Y_a * Z_b^3 */
- }
- /* n3, n4 */
- int a_Z_is_one = BN_cmp(&a->Z, &group->one) == 0;
- if (a_Z_is_one) {
- if (!BN_copy(n3, &b->X) || !BN_copy(n4, &b->Y)) {
- goto end;
- }
- /* n3 = X_b */
- /* n4 = Y_b */
- } else {
- if (!field_sqr(group, n0, &a->Z, ctx) ||
- !field_mul(group, n3, &b->X, n0, ctx)) {
- goto end;
- }
- /* n3 = X_b * Z_a^2 */
- if (!field_mul(group, n0, n0, &a->Z, ctx) ||
- !field_mul(group, n4, &b->Y, n0, ctx)) {
- goto end;
- }
- /* n4 = Y_b * Z_a^3 */
- }
- /* n5, n6 */
- if (!BN_mod_sub_quick(n5, n1, n3, p) ||
- !BN_mod_sub_quick(n6, n2, n4, p)) {
- goto end;
- }
- /* n5 = n1 - n3 */
- /* n6 = n2 - n4 */
- if (BN_is_zero(n5)) {
- if (BN_is_zero(n6)) {
- /* a is the same point as b */
- BN_CTX_end(ctx);
- ret = EC_POINT_dbl(group, r, a, ctx);
- ctx = NULL;
- goto end;
- } else {
- /* a is the inverse of b */
- BN_zero(&r->Z);
- ret = 1;
- goto end;
- }
- }
- /* 'n7', 'n8' */
- if (!BN_mod_add_quick(n1, n1, n3, p) ||
- !BN_mod_add_quick(n2, n2, n4, p)) {
- goto end;
- }
- /* 'n7' = n1 + n3 */
- /* 'n8' = n2 + n4 */
- /* Z_r */
- if (a_Z_is_one && b_Z_is_one) {
- if (!BN_copy(&r->Z, n5)) {
- goto end;
- }
- } else {
- if (a_Z_is_one) {
- if (!BN_copy(n0, &b->Z)) {
- goto end;
- }
- } else if (b_Z_is_one) {
- if (!BN_copy(n0, &a->Z)) {
- goto end;
- }
- } else if (!field_mul(group, n0, &a->Z, &b->Z, ctx)) {
- goto end;
- }
- if (!field_mul(group, &r->Z, n0, n5, ctx)) {
- goto end;
- }
- }
- /* Z_r = Z_a * Z_b * n5 */
- /* X_r */
- if (!field_sqr(group, n0, n6, ctx) ||
- !field_sqr(group, n4, n5, ctx) ||
- !field_mul(group, n3, n1, n4, ctx) ||
- !BN_mod_sub_quick(&r->X, n0, n3, p)) {
- goto end;
- }
- /* X_r = n6^2 - n5^2 * 'n7' */
- /* 'n9' */
- if (!BN_mod_lshift1_quick(n0, &r->X, p) ||
- !BN_mod_sub_quick(n0, n3, n0, p)) {
- goto end;
- }
- /* n9 = n5^2 * 'n7' - 2 * X_r */
- /* Y_r */
- if (!field_mul(group, n0, n0, n6, ctx) ||
- !field_mul(group, n5, n4, n5, ctx)) {
- goto end; /* now n5 is n5^3 */
- }
- if (!field_mul(group, n1, n2, n5, ctx) ||
- !BN_mod_sub_quick(n0, n0, n1, p)) {
- goto end;
- }
- if (BN_is_odd(n0) && !BN_add(n0, n0, p)) {
- goto end;
- }
- /* now 0 <= n0 < 2*p, and n0 is even */
- if (!BN_rshift1(&r->Y, n0)) {
- goto end;
- }
- /* Y_r = (n6 * 'n9' - 'n8' * 'n5^3') / 2 */
- ret = 1;
- end:
- if (ctx) {
- /* otherwise we already called BN_CTX_end */
- BN_CTX_end(ctx);
- }
- BN_CTX_free(new_ctx);
- return ret;
- }
- int ec_GFp_simple_dbl(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a,
- BN_CTX *ctx) {
- int (*field_mul)(const EC_GROUP *, BIGNUM *, const BIGNUM *, const BIGNUM *,
- BN_CTX *);
- int (*field_sqr)(const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *);
- const BIGNUM *p;
- BN_CTX *new_ctx = NULL;
- BIGNUM *n0, *n1, *n2, *n3;
- int ret = 0;
- if (EC_POINT_is_at_infinity(group, a)) {
- BN_zero(&r->Z);
- return 1;
- }
- field_mul = group->meth->field_mul;
- field_sqr = group->meth->field_sqr;
- p = &group->field;
- if (ctx == NULL) {
- ctx = new_ctx = BN_CTX_new();
- if (ctx == NULL) {
- return 0;
- }
- }
- BN_CTX_start(ctx);
- n0 = BN_CTX_get(ctx);
- n1 = BN_CTX_get(ctx);
- n2 = BN_CTX_get(ctx);
- n3 = BN_CTX_get(ctx);
- if (n3 == NULL) {
- goto err;
- }
- /* Note that in this function we must not read components of 'a'
- * once we have written the corresponding components of 'r'.
- * ('r' might the same as 'a'.)
- */
- /* n1 */
- if (BN_cmp(&a->Z, &group->one) == 0) {
- if (!field_sqr(group, n0, &a->X, ctx) ||
- !BN_mod_lshift1_quick(n1, n0, p) ||
- !BN_mod_add_quick(n0, n0, n1, p) ||
- !BN_mod_add_quick(n1, n0, &group->a, p)) {
- goto err;
- }
- /* n1 = 3 * X_a^2 + a_curve */
- } else if (group->a_is_minus3) {
- if (!field_sqr(group, n1, &a->Z, ctx) ||
- !BN_mod_add_quick(n0, &a->X, n1, p) ||
- !BN_mod_sub_quick(n2, &a->X, n1, p) ||
- !field_mul(group, n1, n0, n2, ctx) ||
- !BN_mod_lshift1_quick(n0, n1, p) ||
- !BN_mod_add_quick(n1, n0, n1, p)) {
- goto err;
- }
- /* n1 = 3 * (X_a + Z_a^2) * (X_a - Z_a^2)
- * = 3 * X_a^2 - 3 * Z_a^4 */
- } else {
- if (!field_sqr(group, n0, &a->X, ctx) ||
- !BN_mod_lshift1_quick(n1, n0, p) ||
- !BN_mod_add_quick(n0, n0, n1, p) ||
- !field_sqr(group, n1, &a->Z, ctx) ||
- !field_sqr(group, n1, n1, ctx) ||
- !field_mul(group, n1, n1, &group->a, ctx) ||
- !BN_mod_add_quick(n1, n1, n0, p)) {
- goto err;
- }
- /* n1 = 3 * X_a^2 + a_curve * Z_a^4 */
- }
- /* Z_r */
- if (BN_cmp(&a->Z, &group->one) == 0) {
- if (!BN_copy(n0, &a->Y)) {
- goto err;
- }
- } else if (!field_mul(group, n0, &a->Y, &a->Z, ctx)) {
- goto err;
- }
- if (!BN_mod_lshift1_quick(&r->Z, n0, p)) {
- goto err;
- }
- /* Z_r = 2 * Y_a * Z_a */
- /* n2 */
- if (!field_sqr(group, n3, &a->Y, ctx) ||
- !field_mul(group, n2, &a->X, n3, ctx) ||
- !BN_mod_lshift_quick(n2, n2, 2, p)) {
- goto err;
- }
- /* n2 = 4 * X_a * Y_a^2 */
- /* X_r */
- if (!BN_mod_lshift1_quick(n0, n2, p) ||
- !field_sqr(group, &r->X, n1, ctx) ||
- !BN_mod_sub_quick(&r->X, &r->X, n0, p)) {
- goto err;
- }
- /* X_r = n1^2 - 2 * n2 */
- /* n3 */
- if (!field_sqr(group, n0, n3, ctx) ||
- !BN_mod_lshift_quick(n3, n0, 3, p)) {
- goto err;
- }
- /* n3 = 8 * Y_a^4 */
- /* Y_r */
- if (!BN_mod_sub_quick(n0, n2, &r->X, p) ||
- !field_mul(group, n0, n1, n0, ctx) ||
- !BN_mod_sub_quick(&r->Y, n0, n3, p)) {
- goto err;
- }
- /* Y_r = n1 * (n2 - X_r) - n3 */
- ret = 1;
- err:
- BN_CTX_end(ctx);
- BN_CTX_free(new_ctx);
- return ret;
- }
- int ec_GFp_simple_invert(const EC_GROUP *group, EC_POINT *point, BN_CTX *ctx) {
- if (EC_POINT_is_at_infinity(group, point) || BN_is_zero(&point->Y)) {
- /* point is its own inverse */
- return 1;
- }
- return BN_usub(&point->Y, &group->field, &point->Y);
- }
- int ec_GFp_simple_is_at_infinity(const EC_GROUP *group, const EC_POINT *point) {
- return BN_is_zero(&point->Z);
- }
- int ec_GFp_simple_is_on_curve(const EC_GROUP *group, const EC_POINT *point,
- BN_CTX *ctx) {
- int (*field_mul)(const EC_GROUP *, BIGNUM *, const BIGNUM *, const BIGNUM *,
- BN_CTX *);
- int (*field_sqr)(const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *);
- const BIGNUM *p;
- BN_CTX *new_ctx = NULL;
- BIGNUM *rh, *tmp, *Z4, *Z6;
- int ret = 0;
- if (EC_POINT_is_at_infinity(group, point)) {
- return 1;
- }
- field_mul = group->meth->field_mul;
- field_sqr = group->meth->field_sqr;
- p = &group->field;
- if (ctx == NULL) {
- ctx = new_ctx = BN_CTX_new();
- if (ctx == NULL) {
- return 0;
- }
- }
- BN_CTX_start(ctx);
- rh = BN_CTX_get(ctx);
- tmp = BN_CTX_get(ctx);
- Z4 = BN_CTX_get(ctx);
- Z6 = BN_CTX_get(ctx);
- if (Z6 == NULL) {
- goto err;
- }
- /* We have a curve defined by a Weierstrass equation
- * y^2 = x^3 + a*x + b.
- * The point to consider is given in Jacobian projective coordinates
- * where (X, Y, Z) represents (x, y) = (X/Z^2, Y/Z^3).
- * Substituting this and multiplying by Z^6 transforms the above equation
- * into
- * Y^2 = X^3 + a*X*Z^4 + b*Z^6.
- * To test this, we add up the right-hand side in 'rh'.
- */
- /* rh := X^2 */
- if (!field_sqr(group, rh, &point->X, ctx)) {
- goto err;
- }
- if (BN_cmp(&point->Z, &group->one) != 0) {
- if (!field_sqr(group, tmp, &point->Z, ctx) ||
- !field_sqr(group, Z4, tmp, ctx) ||
- !field_mul(group, Z6, Z4, tmp, ctx)) {
- goto err;
- }
- /* rh := (rh + a*Z^4)*X */
- if (group->a_is_minus3) {
- if (!BN_mod_lshift1_quick(tmp, Z4, p) ||
- !BN_mod_add_quick(tmp, tmp, Z4, p) ||
- !BN_mod_sub_quick(rh, rh, tmp, p) ||
- !field_mul(group, rh, rh, &point->X, ctx)) {
- goto err;
- }
- } else {
- if (!field_mul(group, tmp, Z4, &group->a, ctx) ||
- !BN_mod_add_quick(rh, rh, tmp, p) ||
- !field_mul(group, rh, rh, &point->X, ctx)) {
- goto err;
- }
- }
- /* rh := rh + b*Z^6 */
- if (!field_mul(group, tmp, &group->b, Z6, ctx) ||
- !BN_mod_add_quick(rh, rh, tmp, p)) {
- goto err;
- }
- } else {
- /* rh := (rh + a)*X */
- if (!BN_mod_add_quick(rh, rh, &group->a, p) ||
- !field_mul(group, rh, rh, &point->X, ctx)) {
- goto err;
- }
- /* rh := rh + b */
- if (!BN_mod_add_quick(rh, rh, &group->b, p)) {
- goto err;
- }
- }
- /* 'lh' := Y^2 */
- if (!field_sqr(group, tmp, &point->Y, ctx)) {
- goto err;
- }
- ret = (0 == BN_ucmp(tmp, rh));
- err:
- BN_CTX_end(ctx);
- BN_CTX_free(new_ctx);
- return ret;
- }
- int ec_GFp_simple_cmp(const EC_GROUP *group, const EC_POINT *a,
- const EC_POINT *b, BN_CTX *ctx) {
- /* return values:
- * -1 error
- * 0 equal (in affine coordinates)
- * 1 not equal
- */
- int (*field_mul)(const EC_GROUP *, BIGNUM *, const BIGNUM *, const BIGNUM *,
- BN_CTX *);
- int (*field_sqr)(const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *);
- BN_CTX *new_ctx = NULL;
- BIGNUM *tmp1, *tmp2, *Za23, *Zb23;
- const BIGNUM *tmp1_, *tmp2_;
- int ret = -1;
- if (EC_POINT_is_at_infinity(group, a)) {
- return EC_POINT_is_at_infinity(group, b) ? 0 : 1;
- }
- if (EC_POINT_is_at_infinity(group, b)) {
- return 1;
- }
- int a_Z_is_one = BN_cmp(&a->Z, &group->one) == 0;
- int b_Z_is_one = BN_cmp(&b->Z, &group->one) == 0;
- if (a_Z_is_one && b_Z_is_one) {
- return ((BN_cmp(&a->X, &b->X) == 0) && BN_cmp(&a->Y, &b->Y) == 0) ? 0 : 1;
- }
- field_mul = group->meth->field_mul;
- field_sqr = group->meth->field_sqr;
- if (ctx == NULL) {
- ctx = new_ctx = BN_CTX_new();
- if (ctx == NULL) {
- return -1;
- }
- }
- BN_CTX_start(ctx);
- tmp1 = BN_CTX_get(ctx);
- tmp2 = BN_CTX_get(ctx);
- Za23 = BN_CTX_get(ctx);
- Zb23 = BN_CTX_get(ctx);
- if (Zb23 == NULL) {
- goto end;
- }
- /* We have to decide whether
- * (X_a/Z_a^2, Y_a/Z_a^3) = (X_b/Z_b^2, Y_b/Z_b^3),
- * or equivalently, whether
- * (X_a*Z_b^2, Y_a*Z_b^3) = (X_b*Z_a^2, Y_b*Z_a^3).
- */
- if (!b_Z_is_one) {
- if (!field_sqr(group, Zb23, &b->Z, ctx) ||
- !field_mul(group, tmp1, &a->X, Zb23, ctx)) {
- goto end;
- }
- tmp1_ = tmp1;
- } else {
- tmp1_ = &a->X;
- }
- if (!a_Z_is_one) {
- if (!field_sqr(group, Za23, &a->Z, ctx) ||
- !field_mul(group, tmp2, &b->X, Za23, ctx)) {
- goto end;
- }
- tmp2_ = tmp2;
- } else {
- tmp2_ = &b->X;
- }
- /* compare X_a*Z_b^2 with X_b*Z_a^2 */
- if (BN_cmp(tmp1_, tmp2_) != 0) {
- ret = 1; /* points differ */
- goto end;
- }
- if (!b_Z_is_one) {
- if (!field_mul(group, Zb23, Zb23, &b->Z, ctx) ||
- !field_mul(group, tmp1, &a->Y, Zb23, ctx)) {
- goto end;
- }
- /* tmp1_ = tmp1 */
- } else {
- tmp1_ = &a->Y;
- }
- if (!a_Z_is_one) {
- if (!field_mul(group, Za23, Za23, &a->Z, ctx) ||
- !field_mul(group, tmp2, &b->Y, Za23, ctx)) {
- goto end;
- }
- /* tmp2_ = tmp2 */
- } else {
- tmp2_ = &b->Y;
- }
- /* compare Y_a*Z_b^3 with Y_b*Z_a^3 */
- if (BN_cmp(tmp1_, tmp2_) != 0) {
- ret = 1; /* points differ */
- goto end;
- }
- /* points are equal */
- ret = 0;
- end:
- BN_CTX_end(ctx);
- BN_CTX_free(new_ctx);
- return ret;
- }
- int ec_GFp_simple_make_affine(const EC_GROUP *group, EC_POINT *point,
- BN_CTX *ctx) {
- BN_CTX *new_ctx = NULL;
- BIGNUM *x, *y;
- int ret = 0;
- if (BN_cmp(&point->Z, &group->one) == 0 ||
- EC_POINT_is_at_infinity(group, point)) {
- return 1;
- }
- if (ctx == NULL) {
- ctx = new_ctx = BN_CTX_new();
- if (ctx == NULL) {
- return 0;
- }
- }
- BN_CTX_start(ctx);
- x = BN_CTX_get(ctx);
- y = BN_CTX_get(ctx);
- if (y == NULL) {
- goto err;
- }
- if (!EC_POINT_get_affine_coordinates_GFp(group, point, x, y, ctx) ||
- !EC_POINT_set_affine_coordinates_GFp(group, point, x, y, ctx)) {
- goto err;
- }
- if (BN_cmp(&point->Z, &group->one) != 0) {
- OPENSSL_PUT_ERROR(EC, ERR_R_INTERNAL_ERROR);
- goto err;
- }
- ret = 1;
- err:
- BN_CTX_end(ctx);
- BN_CTX_free(new_ctx);
- return ret;
- }
- int ec_GFp_simple_points_make_affine(const EC_GROUP *group, size_t num,
- EC_POINT *points[], BN_CTX *ctx) {
- BN_CTX *new_ctx = NULL;
- BIGNUM *tmp, *tmp_Z;
- BIGNUM **prod_Z = NULL;
- int ret = 0;
- if (num == 0) {
- return 1;
- }
- if (ctx == NULL) {
- ctx = new_ctx = BN_CTX_new();
- if (ctx == NULL) {
- return 0;
- }
- }
- BN_CTX_start(ctx);
- tmp = BN_CTX_get(ctx);
- tmp_Z = BN_CTX_get(ctx);
- if (tmp == NULL || tmp_Z == NULL) {
- goto err;
- }
- prod_Z = OPENSSL_malloc(num * sizeof(prod_Z[0]));
- if (prod_Z == NULL) {
- goto err;
- }
- OPENSSL_memset(prod_Z, 0, num * sizeof(prod_Z[0]));
- for (size_t i = 0; i < num; i++) {
- prod_Z[i] = BN_new();
- if (prod_Z[i] == NULL) {
- goto err;
- }
- }
- /* Set each prod_Z[i] to the product of points[0]->Z .. points[i]->Z,
- * skipping any zero-valued inputs (pretend that they're 1). */
- if (!BN_is_zero(&points[0]->Z)) {
- if (!BN_copy(prod_Z[0], &points[0]->Z)) {
- goto err;
- }
- } else {
- if (BN_copy(prod_Z[0], &group->one) == NULL) {
- goto err;
- }
- }
- for (size_t i = 1; i < num; i++) {
- if (!BN_is_zero(&points[i]->Z)) {
- if (!group->meth->field_mul(group, prod_Z[i], prod_Z[i - 1],
- &points[i]->Z, ctx)) {
- goto err;
- }
- } else {
- if (!BN_copy(prod_Z[i], prod_Z[i - 1])) {
- goto err;
- }
- }
- }
- /* Now use a single explicit inversion to replace every non-zero points[i]->Z
- * by its inverse. We use |BN_mod_inverse_odd| instead of doing a constant-
- * time inversion using Fermat's Little Theorem because this function is
- * usually only used for converting multiples of a public key point to
- * affine, and a public key point isn't secret. If we were to use Fermat's
- * Little Theorem then the cost of the inversion would usually be so high
- * that converting the multiples to affine would be counterproductive. */
- int no_inverse;
- if (!BN_mod_inverse_odd(tmp, &no_inverse, prod_Z[num - 1], &group->field,
- ctx)) {
- OPENSSL_PUT_ERROR(EC, ERR_R_BN_LIB);
- goto err;
- }
- if (group->meth->field_encode != NULL) {
- /* In the Montgomery case, we just turned R*H (representing H)
- * into 1/(R*H), but we need R*(1/H) (representing 1/H);
- * i.e. we need to multiply by the Montgomery factor twice. */
- if (!group->meth->field_encode(group, tmp, tmp, ctx) ||
- !group->meth->field_encode(group, tmp, tmp, ctx)) {
- goto err;
- }
- }
- for (size_t i = num - 1; i > 0; --i) {
- /* Loop invariant: tmp is the product of the inverses of
- * points[0]->Z .. points[i]->Z (zero-valued inputs skipped). */
- if (BN_is_zero(&points[i]->Z)) {
- continue;
- }
- /* Set tmp_Z to the inverse of points[i]->Z (as product
- * of Z inverses 0 .. i, Z values 0 .. i - 1). */
- if (!group->meth->field_mul(group, tmp_Z, prod_Z[i - 1], tmp, ctx) ||
- /* Update tmp to satisfy the loop invariant for i - 1. */
- !group->meth->field_mul(group, tmp, tmp, &points[i]->Z, ctx) ||
- /* Replace points[i]->Z by its inverse. */
- !BN_copy(&points[i]->Z, tmp_Z)) {
- goto err;
- }
- }
- /* Replace points[0]->Z by its inverse. */
- if (!BN_is_zero(&points[0]->Z) && !BN_copy(&points[0]->Z, tmp)) {
- goto err;
- }
- /* Finally, fix up the X and Y coordinates for all points. */
- for (size_t i = 0; i < num; i++) {
- EC_POINT *p = points[i];
- if (!BN_is_zero(&p->Z)) {
- /* turn (X, Y, 1/Z) into (X/Z^2, Y/Z^3, 1). */
- if (!group->meth->field_sqr(group, tmp, &p->Z, ctx) ||
- !group->meth->field_mul(group, &p->X, &p->X, tmp, ctx) ||
- !group->meth->field_mul(group, tmp, tmp, &p->Z, ctx) ||
- !group->meth->field_mul(group, &p->Y, &p->Y, tmp, ctx)) {
- goto err;
- }
- if (BN_copy(&p->Z, &group->one) == NULL) {
- goto err;
- }
- }
- }
- ret = 1;
- err:
- BN_CTX_end(ctx);
- BN_CTX_free(new_ctx);
- if (prod_Z != NULL) {
- for (size_t i = 0; i < num; i++) {
- if (prod_Z[i] == NULL) {
- break;
- }
- BN_clear_free(prod_Z[i]);
- }
- OPENSSL_free(prod_Z);
- }
- return ret;
- }
- int ec_GFp_simple_field_mul(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a,
- const BIGNUM *b, BN_CTX *ctx) {
- return BN_mod_mul(r, a, b, &group->field, ctx);
- }
- int ec_GFp_simple_field_sqr(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a,
- BN_CTX *ctx) {
- return BN_mod_sqr(r, a, &group->field, ctx);
- }
|