| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240 |
- /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
- * All rights reserved.
- *
- * This package is an SSL implementation written
- * by Eric Young (eay@cryptsoft.com).
- * The implementation was written so as to conform with Netscapes SSL.
- *
- * This library is free for commercial and non-commercial use as long as
- * the following conditions are aheared to. The following conditions
- * apply to all code found in this distribution, be it the RC4, RSA,
- * lhash, DES, etc., code; not just the SSL code. The SSL documentation
- * included with this distribution is covered by the same copyright terms
- * except that the holder is Tim Hudson (tjh@cryptsoft.com).
- *
- * Copyright remains Eric Young's, and as such any Copyright notices in
- * the code are not to be removed.
- * If this package is used in a product, Eric Young should be given attribution
- * as the author of the parts of the library used.
- * This can be in the form of a textual message at program startup or
- * in documentation (online or textual) provided with the package.
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions
- * are met:
- * 1. Redistributions of source code must retain the copyright
- * notice, this list of conditions and the following disclaimer.
- * 2. Redistributions in binary form must reproduce the above copyright
- * notice, this list of conditions and the following disclaimer in the
- * documentation and/or other materials provided with the distribution.
- * 3. All advertising materials mentioning features or use of this software
- * must display the following acknowledgement:
- * "This product includes cryptographic software written by
- * Eric Young (eay@cryptsoft.com)"
- * The word 'cryptographic' can be left out if the rouines from the library
- * being used are not cryptographic related :-).
- * 4. If you include any Windows specific code (or a derivative thereof) from
- * the apps directory (application code) you must include an acknowledgement:
- * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
- *
- * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
- * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
- * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
- * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
- * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
- * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
- * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
- * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
- * SUCH DAMAGE.
- *
- * The licence and distribution terms for any publically available version or
- * derivative of this code cannot be changed. i.e. this code cannot simply be
- * copied and put under another distribution licence
- * [including the GNU Public Licence.]
- */
- /* ====================================================================
- * Copyright (c) 1998-2005 The OpenSSL Project. All rights reserved.
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions
- * are met:
- *
- * 1. Redistributions of source code must retain the above copyright
- * notice, this list of conditions and the following disclaimer.
- *
- * 2. Redistributions in binary form must reproduce the above copyright
- * notice, this list of conditions and the following disclaimer in
- * the documentation and/or other materials provided with the
- * distribution.
- *
- * 3. All advertising materials mentioning features or use of this
- * software must display the following acknowledgment:
- * "This product includes software developed by the OpenSSL Project
- * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
- *
- * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
- * endorse or promote products derived from this software without
- * prior written permission. For written permission, please contact
- * openssl-core@openssl.org.
- *
- * 5. Products derived from this software may not be called "OpenSSL"
- * nor may "OpenSSL" appear in their names without prior written
- * permission of the OpenSSL Project.
- *
- * 6. Redistributions of any form whatsoever must retain the following
- * acknowledgment:
- * "This product includes software developed by the OpenSSL Project
- * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
- *
- * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
- * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
- * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
- * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
- * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
- * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
- * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
- * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
- * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
- * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
- * OF THE POSSIBILITY OF SUCH DAMAGE.
- * ====================================================================
- *
- * This product includes cryptographic software written by Eric Young
- * (eay@cryptsoft.com). This product includes software written by Tim
- * Hudson (tjh@cryptsoft.com). */
- #include <openssl/bn.h>
- #include <assert.h>
- #include <string.h>
- #include <openssl/cpu.h>
- #include <openssl/err.h>
- #include <openssl/mem.h>
- #include "internal.h"
- #if !defined(OPENSSL_NO_ASM) && defined(OPENSSL_X86_64)
- #define OPENSSL_BN_ASM_MONT5
- #define RSAZ_ENABLED
- #include "rsaz_exp.h"
- void bn_mul_mont_gather5(BN_ULONG *rp, const BN_ULONG *ap, const void *table,
- const BN_ULONG *np, const BN_ULONG *n0, int num,
- int power);
- void bn_scatter5(const BN_ULONG *inp, size_t num, void *table, size_t power);
- void bn_gather5(BN_ULONG *out, size_t num, void *table, size_t power);
- void bn_power5(BN_ULONG *rp, const BN_ULONG *ap, const void *table,
- const BN_ULONG *np, const BN_ULONG *n0, int num, int power);
- int bn_from_montgomery(BN_ULONG *rp, const BN_ULONG *ap,
- const BN_ULONG *not_used, const BN_ULONG *np,
- const BN_ULONG *n0, int num);
- #endif
- int BN_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx) {
- int i, bits, ret = 0;
- BIGNUM *v, *rr;
- BN_CTX_start(ctx);
- if (r == a || r == p) {
- rr = BN_CTX_get(ctx);
- } else {
- rr = r;
- }
- v = BN_CTX_get(ctx);
- if (rr == NULL || v == NULL) {
- goto err;
- }
- if (BN_copy(v, a) == NULL) {
- goto err;
- }
- bits = BN_num_bits(p);
- if (BN_is_odd(p)) {
- if (BN_copy(rr, a) == NULL) {
- goto err;
- }
- } else {
- if (!BN_one(rr)) {
- goto err;
- }
- }
- for (i = 1; i < bits; i++) {
- if (!BN_sqr(v, v, ctx)) {
- goto err;
- }
- if (BN_is_bit_set(p, i)) {
- if (!BN_mul(rr, rr, v, ctx)) {
- goto err;
- }
- }
- }
- if (r != rr && !BN_copy(r, rr)) {
- goto err;
- }
- ret = 1;
- err:
- BN_CTX_end(ctx);
- return ret;
- }
- /* maximum precomputation table size for *variable* sliding windows */
- #define TABLE_SIZE 32
- typedef struct bn_recp_ctx_st {
- BIGNUM N; /* the divisor */
- BIGNUM Nr; /* the reciprocal */
- int num_bits;
- int shift;
- int flags;
- } BN_RECP_CTX;
- static void BN_RECP_CTX_init(BN_RECP_CTX *recp) {
- BN_init(&recp->N);
- BN_init(&recp->Nr);
- recp->num_bits = 0;
- recp->shift = 0;
- recp->flags = 0;
- }
- static void BN_RECP_CTX_free(BN_RECP_CTX *recp) {
- if (recp == NULL) {
- return;
- }
- BN_free(&recp->N);
- BN_free(&recp->Nr);
- }
- static int BN_RECP_CTX_set(BN_RECP_CTX *recp, const BIGNUM *d, BN_CTX *ctx) {
- if (!BN_copy(&(recp->N), d)) {
- return 0;
- }
- BN_zero(&recp->Nr);
- recp->num_bits = BN_num_bits(d);
- recp->shift = 0;
- return 1;
- }
- /* len is the expected size of the result We actually calculate with an extra
- * word of precision, so we can do faster division if the remainder is not
- * required.
- * r := 2^len / m */
- static int BN_reciprocal(BIGNUM *r, const BIGNUM *m, int len, BN_CTX *ctx) {
- int ret = -1;
- BIGNUM *t;
- BN_CTX_start(ctx);
- t = BN_CTX_get(ctx);
- if (t == NULL) {
- goto err;
- }
- if (!BN_set_bit(t, len)) {
- goto err;
- }
- if (!BN_div(r, NULL, t, m, ctx)) {
- goto err;
- }
- ret = len;
- err:
- BN_CTX_end(ctx);
- return ret;
- }
- static int BN_div_recp(BIGNUM *dv, BIGNUM *rem, const BIGNUM *m,
- BN_RECP_CTX *recp, BN_CTX *ctx) {
- int i, j, ret = 0;
- BIGNUM *a, *b, *d, *r;
- BN_CTX_start(ctx);
- a = BN_CTX_get(ctx);
- b = BN_CTX_get(ctx);
- if (dv != NULL) {
- d = dv;
- } else {
- d = BN_CTX_get(ctx);
- }
- if (rem != NULL) {
- r = rem;
- } else {
- r = BN_CTX_get(ctx);
- }
- if (a == NULL || b == NULL || d == NULL || r == NULL) {
- goto err;
- }
- if (BN_ucmp(m, &recp->N) < 0) {
- BN_zero(d);
- if (!BN_copy(r, m)) {
- goto err;
- }
- BN_CTX_end(ctx);
- return 1;
- }
- /* We want the remainder
- * Given input of ABCDEF / ab
- * we need multiply ABCDEF by 3 digests of the reciprocal of ab */
- /* i := max(BN_num_bits(m), 2*BN_num_bits(N)) */
- i = BN_num_bits(m);
- j = recp->num_bits << 1;
- if (j > i) {
- i = j;
- }
- /* Nr := round(2^i / N) */
- if (i != recp->shift) {
- recp->shift =
- BN_reciprocal(&(recp->Nr), &(recp->N), i,
- ctx); /* BN_reciprocal returns i, or -1 for an error */
- }
- if (recp->shift == -1) {
- goto err;
- }
- /* d := |round(round(m / 2^BN_num_bits(N)) * recp->Nr / 2^(i -
- * BN_num_bits(N)))|
- * = |round(round(m / 2^BN_num_bits(N)) * round(2^i / N) / 2^(i -
- * BN_num_bits(N)))|
- * <= |(m / 2^BN_num_bits(N)) * (2^i / N) * (2^BN_num_bits(N) / 2^i)|
- * = |m/N| */
- if (!BN_rshift(a, m, recp->num_bits)) {
- goto err;
- }
- if (!BN_mul(b, a, &(recp->Nr), ctx)) {
- goto err;
- }
- if (!BN_rshift(d, b, i - recp->num_bits)) {
- goto err;
- }
- d->neg = 0;
- if (!BN_mul(b, &(recp->N), d, ctx)) {
- goto err;
- }
- if (!BN_usub(r, m, b)) {
- goto err;
- }
- r->neg = 0;
- j = 0;
- while (BN_ucmp(r, &(recp->N)) >= 0) {
- if (j++ > 2) {
- OPENSSL_PUT_ERROR(BN, BN_R_BAD_RECIPROCAL);
- goto err;
- }
- if (!BN_usub(r, r, &(recp->N))) {
- goto err;
- }
- if (!BN_add_word(d, 1)) {
- goto err;
- }
- }
- r->neg = BN_is_zero(r) ? 0 : m->neg;
- d->neg = m->neg ^ recp->N.neg;
- ret = 1;
- err:
- BN_CTX_end(ctx);
- return ret;
- }
- static int BN_mod_mul_reciprocal(BIGNUM *r, const BIGNUM *x, const BIGNUM *y,
- BN_RECP_CTX *recp, BN_CTX *ctx) {
- int ret = 0;
- BIGNUM *a;
- const BIGNUM *ca;
- BN_CTX_start(ctx);
- a = BN_CTX_get(ctx);
- if (a == NULL) {
- goto err;
- }
- if (y != NULL) {
- if (x == y) {
- if (!BN_sqr(a, x, ctx)) {
- goto err;
- }
- } else {
- if (!BN_mul(a, x, y, ctx)) {
- goto err;
- }
- }
- ca = a;
- } else {
- ca = x; /* Just do the mod */
- }
- ret = BN_div_recp(NULL, r, ca, recp, ctx);
- err:
- BN_CTX_end(ctx);
- return ret;
- }
- /* BN_window_bits_for_exponent_size -- macro for sliding window mod_exp
- * functions
- *
- * For window size 'w' (w >= 2) and a random 'b' bits exponent, the number of
- * multiplications is a constant plus on average
- *
- * 2^(w-1) + (b-w)/(w+1);
- *
- * here 2^(w-1) is for precomputing the table (we actually need entries only
- * for windows that have the lowest bit set), and (b-w)/(w+1) is an
- * approximation for the expected number of w-bit windows, not counting the
- * first one.
- *
- * Thus we should use
- *
- * w >= 6 if b > 671
- * w = 5 if 671 > b > 239
- * w = 4 if 239 > b > 79
- * w = 3 if 79 > b > 23
- * w <= 2 if 23 > b
- *
- * (with draws in between). Very small exponents are often selected
- * with low Hamming weight, so we use w = 1 for b <= 23. */
- #define BN_window_bits_for_exponent_size(b) \
- ((b) > 671 ? 6 : \
- (b) > 239 ? 5 : \
- (b) > 79 ? 4 : \
- (b) > 23 ? 3 : 1)
- static int mod_exp_recp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
- const BIGNUM *m, BN_CTX *ctx) {
- int i, j, bits, ret = 0, wstart, window;
- int start = 1;
- BIGNUM *aa;
- /* Table of variables obtained from 'ctx' */
- BIGNUM *val[TABLE_SIZE];
- BN_RECP_CTX recp;
- bits = BN_num_bits(p);
- if (bits == 0) {
- /* x**0 mod 1 is still zero. */
- if (BN_is_one(m)) {
- BN_zero(r);
- return 1;
- }
- return BN_one(r);
- }
- BN_CTX_start(ctx);
- aa = BN_CTX_get(ctx);
- val[0] = BN_CTX_get(ctx);
- if (!aa || !val[0]) {
- goto err;
- }
- BN_RECP_CTX_init(&recp);
- if (m->neg) {
- /* ignore sign of 'm' */
- if (!BN_copy(aa, m)) {
- goto err;
- }
- aa->neg = 0;
- if (BN_RECP_CTX_set(&recp, aa, ctx) <= 0) {
- goto err;
- }
- } else {
- if (BN_RECP_CTX_set(&recp, m, ctx) <= 0) {
- goto err;
- }
- }
- if (!BN_nnmod(val[0], a, m, ctx)) {
- goto err; /* 1 */
- }
- if (BN_is_zero(val[0])) {
- BN_zero(r);
- ret = 1;
- goto err;
- }
- window = BN_window_bits_for_exponent_size(bits);
- if (window > 1) {
- if (!BN_mod_mul_reciprocal(aa, val[0], val[0], &recp, ctx)) {
- goto err; /* 2 */
- }
- j = 1 << (window - 1);
- for (i = 1; i < j; i++) {
- if (((val[i] = BN_CTX_get(ctx)) == NULL) ||
- !BN_mod_mul_reciprocal(val[i], val[i - 1], aa, &recp, ctx)) {
- goto err;
- }
- }
- }
- start = 1; /* This is used to avoid multiplication etc
- * when there is only the value '1' in the
- * buffer. */
- wstart = bits - 1; /* The top bit of the window */
- if (!BN_one(r)) {
- goto err;
- }
- for (;;) {
- int wvalue; /* The 'value' of the window */
- int wend; /* The bottom bit of the window */
- if (BN_is_bit_set(p, wstart) == 0) {
- if (!start) {
- if (!BN_mod_mul_reciprocal(r, r, r, &recp, ctx)) {
- goto err;
- }
- }
- if (wstart == 0) {
- break;
- }
- wstart--;
- continue;
- }
- /* We now have wstart on a 'set' bit, we now need to work out
- * how bit a window to do. To do this we need to scan
- * forward until the last set bit before the end of the
- * window */
- wvalue = 1;
- wend = 0;
- for (i = 1; i < window; i++) {
- if (wstart - i < 0) {
- break;
- }
- if (BN_is_bit_set(p, wstart - i)) {
- wvalue <<= (i - wend);
- wvalue |= 1;
- wend = i;
- }
- }
- /* wend is the size of the current window */
- j = wend + 1;
- /* add the 'bytes above' */
- if (!start) {
- for (i = 0; i < j; i++) {
- if (!BN_mod_mul_reciprocal(r, r, r, &recp, ctx)) {
- goto err;
- }
- }
- }
- /* wvalue will be an odd number < 2^window */
- if (!BN_mod_mul_reciprocal(r, r, val[wvalue >> 1], &recp, ctx)) {
- goto err;
- }
- /* move the 'window' down further */
- wstart -= wend + 1;
- start = 0;
- if (wstart < 0) {
- break;
- }
- }
- ret = 1;
- err:
- BN_CTX_end(ctx);
- BN_RECP_CTX_free(&recp);
- return ret;
- }
- int BN_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, const BIGNUM *m,
- BN_CTX *ctx) {
- if (BN_is_odd(m)) {
- return BN_mod_exp_mont(r, a, p, m, ctx, NULL);
- }
- return mod_exp_recp(r, a, p, m, ctx);
- }
- int BN_mod_exp_mont(BIGNUM *rr, const BIGNUM *a, const BIGNUM *p,
- const BIGNUM *m, BN_CTX *ctx, const BN_MONT_CTX *mont) {
- int i, j, bits, ret = 0, wstart, window;
- int start = 1;
- BIGNUM *d, *r;
- const BIGNUM *aa;
- /* Table of variables obtained from 'ctx' */
- BIGNUM *val[TABLE_SIZE];
- BN_MONT_CTX *new_mont = NULL;
- if (!BN_is_odd(m)) {
- OPENSSL_PUT_ERROR(BN, BN_R_CALLED_WITH_EVEN_MODULUS);
- return 0;
- }
- bits = BN_num_bits(p);
- if (bits == 0) {
- /* x**0 mod 1 is still zero. */
- if (BN_is_one(m)) {
- BN_zero(rr);
- return 1;
- }
- return BN_one(rr);
- }
- BN_CTX_start(ctx);
- d = BN_CTX_get(ctx);
- r = BN_CTX_get(ctx);
- val[0] = BN_CTX_get(ctx);
- if (!d || !r || !val[0]) {
- goto err;
- }
- /* Allocate a montgomery context if it was not supplied by the caller. */
- if (mont == NULL) {
- new_mont = BN_MONT_CTX_new();
- if (new_mont == NULL || !BN_MONT_CTX_set(new_mont, m, ctx)) {
- goto err;
- }
- mont = new_mont;
- }
- if (a->neg || BN_ucmp(a, m) >= 0) {
- if (!BN_nnmod(val[0], a, m, ctx)) {
- goto err;
- }
- aa = val[0];
- } else {
- aa = a;
- }
- if (BN_is_zero(aa)) {
- BN_zero(rr);
- ret = 1;
- goto err;
- }
- if (!BN_to_montgomery(val[0], aa, mont, ctx)) {
- goto err; /* 1 */
- }
- window = BN_window_bits_for_exponent_size(bits);
- if (window > 1) {
- if (!BN_mod_mul_montgomery(d, val[0], val[0], mont, ctx)) {
- goto err; /* 2 */
- }
- j = 1 << (window - 1);
- for (i = 1; i < j; i++) {
- if (((val[i] = BN_CTX_get(ctx)) == NULL) ||
- !BN_mod_mul_montgomery(val[i], val[i - 1], d, mont, ctx)) {
- goto err;
- }
- }
- }
- start = 1; /* This is used to avoid multiplication etc
- * when there is only the value '1' in the
- * buffer. */
- wstart = bits - 1; /* The top bit of the window */
- j = m->top; /* borrow j */
- if (m->d[j - 1] & (((BN_ULONG)1) << (BN_BITS2 - 1))) {
- if (bn_wexpand(r, j) == NULL) {
- goto err;
- }
- /* 2^(top*BN_BITS2) - m */
- r->d[0] = (0 - m->d[0]) & BN_MASK2;
- for (i = 1; i < j; i++) {
- r->d[i] = (~m->d[i]) & BN_MASK2;
- }
- r->top = j;
- /* Upper words will be zero if the corresponding words of 'm'
- * were 0xfff[...], so decrement r->top accordingly. */
- bn_correct_top(r);
- } else if (!BN_to_montgomery(r, BN_value_one(), mont, ctx)) {
- goto err;
- }
- for (;;) {
- int wvalue; /* The 'value' of the window */
- int wend; /* The bottom bit of the window */
- if (BN_is_bit_set(p, wstart) == 0) {
- if (!start && !BN_mod_mul_montgomery(r, r, r, mont, ctx)) {
- goto err;
- }
- if (wstart == 0) {
- break;
- }
- wstart--;
- continue;
- }
- /* We now have wstart on a 'set' bit, we now need to work out how bit a
- * window to do. To do this we need to scan forward until the last set bit
- * before the end of the window */
- wvalue = 1;
- wend = 0;
- for (i = 1; i < window; i++) {
- if (wstart - i < 0) {
- break;
- }
- if (BN_is_bit_set(p, wstart - i)) {
- wvalue <<= (i - wend);
- wvalue |= 1;
- wend = i;
- }
- }
- /* wend is the size of the current window */
- j = wend + 1;
- /* add the 'bytes above' */
- if (!start) {
- for (i = 0; i < j; i++) {
- if (!BN_mod_mul_montgomery(r, r, r, mont, ctx)) {
- goto err;
- }
- }
- }
- /* wvalue will be an odd number < 2^window */
- if (!BN_mod_mul_montgomery(r, r, val[wvalue >> 1], mont, ctx)) {
- goto err;
- }
- /* move the 'window' down further */
- wstart -= wend + 1;
- start = 0;
- if (wstart < 0) {
- break;
- }
- }
- if (!BN_from_montgomery(rr, r, mont, ctx)) {
- goto err;
- }
- ret = 1;
- err:
- BN_MONT_CTX_free(new_mont);
- BN_CTX_end(ctx);
- return ret;
- }
- /* BN_mod_exp_mont_consttime() stores the precomputed powers in a specific
- * layout so that accessing any of these table values shows the same access
- * pattern as far as cache lines are concerned. The following functions are
- * used to transfer a BIGNUM from/to that table. */
- static int copy_to_prebuf(const BIGNUM *b, int top, unsigned char *buf, int idx,
- int window) {
- int i, j;
- const int width = 1 << window;
- BN_ULONG *table = (BN_ULONG *) buf;
- if (top > b->top) {
- top = b->top; /* this works because 'buf' is explicitly zeroed */
- }
- for (i = 0, j = idx; i < top; i++, j += width) {
- table[j] = b->d[i];
- }
- return 1;
- }
- static int copy_from_prebuf(BIGNUM *b, int top, unsigned char *buf, int idx,
- int window) {
- int i, j;
- const int width = 1 << window;
- volatile BN_ULONG *table = (volatile BN_ULONG *)buf;
- if (bn_wexpand(b, top) == NULL) {
- return 0;
- }
- if (window <= 3) {
- for (i = 0; i < top; i++, table += width) {
- BN_ULONG acc = 0;
- for (j = 0; j < width; j++) {
- acc |= table[j] & ((BN_ULONG)0 - (constant_time_eq_int(j, idx) & 1));
- }
- b->d[i] = acc;
- }
- } else {
- int xstride = 1 << (window - 2);
- BN_ULONG y0, y1, y2, y3;
- i = idx >> (window - 2); /* equivalent of idx / xstride */
- idx &= xstride - 1; /* equivalent of idx % xstride */
- y0 = (BN_ULONG)0 - (constant_time_eq_int(i, 0) & 1);
- y1 = (BN_ULONG)0 - (constant_time_eq_int(i, 1) & 1);
- y2 = (BN_ULONG)0 - (constant_time_eq_int(i, 2) & 1);
- y3 = (BN_ULONG)0 - (constant_time_eq_int(i, 3) & 1);
- for (i = 0; i < top; i++, table += width) {
- BN_ULONG acc = 0;
- for (j = 0; j < xstride; j++) {
- acc |= ((table[j + 0 * xstride] & y0) | (table[j + 1 * xstride] & y1) |
- (table[j + 2 * xstride] & y2) | (table[j + 3 * xstride] & y3)) &
- ((BN_ULONG)0 - (constant_time_eq_int(j, idx) & 1));
- }
- b->d[i] = acc;
- }
- }
- b->top = top;
- bn_correct_top(b);
- return 1;
- }
- /* BN_mod_exp_mont_conttime is based on the assumption that the L1 data cache
- * line width of the target processor is at least the following value. */
- #define MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH (64)
- #define MOD_EXP_CTIME_MIN_CACHE_LINE_MASK \
- (MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH - 1)
- /* Window sizes optimized for fixed window size modular exponentiation
- * algorithm (BN_mod_exp_mont_consttime).
- *
- * To achieve the security goals of BN_mode_exp_mont_consttime, the maximum
- * size of the window must not exceed
- * log_2(MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH).
- *
- * Window size thresholds are defined for cache line sizes of 32 and 64, cache
- * line sizes where log_2(32)=5 and log_2(64)=6 respectively. A window size of
- * 7 should only be used on processors that have a 128 byte or greater cache
- * line size. */
- #if MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH == 64
- #define BN_window_bits_for_ctime_exponent_size(b) \
- ((b) > 937 ? 6 : (b) > 306 ? 5 : (b) > 89 ? 4 : (b) > 22 ? 3 : 1)
- #define BN_MAX_WINDOW_BITS_FOR_CTIME_EXPONENT_SIZE (6)
- #elif MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH == 32
- #define BN_window_bits_for_ctime_exponent_size(b) \
- ((b) > 306 ? 5 : (b) > 89 ? 4 : (b) > 22 ? 3 : 1)
- #define BN_MAX_WINDOW_BITS_FOR_CTIME_EXPONENT_SIZE (5)
- #endif
- /* Given a pointer value, compute the next address that is a cache line
- * multiple. */
- #define MOD_EXP_CTIME_ALIGN(x_) \
- ((unsigned char *)(x_) + \
- (MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH - \
- (((size_t)(x_)) & (MOD_EXP_CTIME_MIN_CACHE_LINE_MASK))))
- /* This variant of BN_mod_exp_mont() uses fixed windows and the special
- * precomputation memory layout to limit data-dependency to a minimum
- * to protect secret exponents (cf. the hyper-threading timing attacks
- * pointed out by Colin Percival,
- * http://www.daemonology.net/hyperthreading-considered-harmful/)
- */
- int BN_mod_exp_mont_consttime(BIGNUM *rr, const BIGNUM *a, const BIGNUM *p,
- const BIGNUM *m, BN_CTX *ctx,
- const BN_MONT_CTX *mont) {
- int i, bits, ret = 0, window, wvalue;
- int top;
- BN_MONT_CTX *new_mont = NULL;
- int numPowers;
- unsigned char *powerbufFree = NULL;
- int powerbufLen = 0;
- unsigned char *powerbuf = NULL;
- BIGNUM tmp, am;
- BIGNUM *new_a = NULL;
- if (!BN_is_odd(m)) {
- OPENSSL_PUT_ERROR(BN, BN_R_CALLED_WITH_EVEN_MODULUS);
- return 0;
- }
- top = m->top;
- bits = BN_num_bits(p);
- if (bits == 0) {
- /* x**0 mod 1 is still zero. */
- if (BN_is_one(m)) {
- BN_zero(rr);
- return 1;
- }
- return BN_one(rr);
- }
- /* Allocate a montgomery context if it was not supplied by the caller. */
- if (mont == NULL) {
- new_mont = BN_MONT_CTX_new();
- if (new_mont == NULL || !BN_MONT_CTX_set(new_mont, m, ctx)) {
- goto err;
- }
- mont = new_mont;
- }
- if (a->neg || BN_ucmp(a, m) >= 0) {
- new_a = BN_new();
- if (new_a == NULL ||
- !BN_nnmod(new_a, a, m, ctx)) {
- goto err;
- }
- a = new_a;
- }
- #ifdef RSAZ_ENABLED
- /* If the size of the operands allow it, perform the optimized
- * RSAZ exponentiation. For further information see
- * crypto/bn/rsaz_exp.c and accompanying assembly modules. */
- if ((16 == a->top) && (16 == p->top) && (BN_num_bits(m) == 1024) &&
- rsaz_avx2_eligible()) {
- if (NULL == bn_wexpand(rr, 16)) {
- goto err;
- }
- RSAZ_1024_mod_exp_avx2(rr->d, a->d, p->d, m->d, mont->RR.d, mont->n0[0]);
- rr->top = 16;
- rr->neg = 0;
- bn_correct_top(rr);
- ret = 1;
- goto err;
- }
- #endif
- /* Get the window size to use with size of p. */
- window = BN_window_bits_for_ctime_exponent_size(bits);
- #if defined(OPENSSL_BN_ASM_MONT5)
- if (window >= 5) {
- window = 5; /* ~5% improvement for RSA2048 sign, and even for RSA4096 */
- /* reserve space for mont->N.d[] copy */
- powerbufLen += top * sizeof(mont->N.d[0]);
- }
- #endif
- /* Allocate a buffer large enough to hold all of the pre-computed
- * powers of am, am itself and tmp.
- */
- numPowers = 1 << window;
- powerbufLen +=
- sizeof(m->d[0]) *
- (top * numPowers + ((2 * top) > numPowers ? (2 * top) : numPowers));
- #ifdef alloca
- if (powerbufLen < 3072) {
- powerbufFree = alloca(powerbufLen + MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH);
- } else
- #endif
- {
- if ((powerbufFree = OPENSSL_malloc(
- powerbufLen + MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH)) == NULL) {
- goto err;
- }
- }
- powerbuf = MOD_EXP_CTIME_ALIGN(powerbufFree);
- OPENSSL_memset(powerbuf, 0, powerbufLen);
- #ifdef alloca
- if (powerbufLen < 3072) {
- powerbufFree = NULL;
- }
- #endif
- /* lay down tmp and am right after powers table */
- tmp.d = (BN_ULONG *)(powerbuf + sizeof(m->d[0]) * top * numPowers);
- am.d = tmp.d + top;
- tmp.top = am.top = 0;
- tmp.dmax = am.dmax = top;
- tmp.neg = am.neg = 0;
- tmp.flags = am.flags = BN_FLG_STATIC_DATA;
- /* prepare a^0 in Montgomery domain */
- /* by Shay Gueron's suggestion */
- if (m->d[top - 1] & (((BN_ULONG)1) << (BN_BITS2 - 1))) {
- /* 2^(top*BN_BITS2) - m */
- tmp.d[0] = (0 - m->d[0]) & BN_MASK2;
- for (i = 1; i < top; i++) {
- tmp.d[i] = (~m->d[i]) & BN_MASK2;
- }
- tmp.top = top;
- } else if (!BN_to_montgomery(&tmp, BN_value_one(), mont, ctx)) {
- goto err;
- }
- /* prepare a^1 in Montgomery domain */
- assert(!a->neg);
- assert(BN_ucmp(a, m) < 0);
- if (!BN_to_montgomery(&am, a, mont, ctx)) {
- goto err;
- }
- #if defined(OPENSSL_BN_ASM_MONT5)
- /* This optimization uses ideas from http://eprint.iacr.org/2011/239,
- * specifically optimization of cache-timing attack countermeasures
- * and pre-computation optimization. */
- /* Dedicated window==4 case improves 512-bit RSA sign by ~15%, but as
- * 512-bit RSA is hardly relevant, we omit it to spare size... */
- if (window == 5 && top > 1) {
- const BN_ULONG *n0 = mont->n0;
- BN_ULONG *np;
- /* BN_to_montgomery can contaminate words above .top
- * [in BN_DEBUG[_DEBUG] build]... */
- for (i = am.top; i < top; i++) {
- am.d[i] = 0;
- }
- for (i = tmp.top; i < top; i++) {
- tmp.d[i] = 0;
- }
- /* copy mont->N.d[] to improve cache locality */
- for (np = am.d + top, i = 0; i < top; i++) {
- np[i] = mont->N.d[i];
- }
- bn_scatter5(tmp.d, top, powerbuf, 0);
- bn_scatter5(am.d, am.top, powerbuf, 1);
- bn_mul_mont(tmp.d, am.d, am.d, np, n0, top);
- bn_scatter5(tmp.d, top, powerbuf, 2);
- /* same as above, but uses squaring for 1/2 of operations */
- for (i = 4; i < 32; i *= 2) {
- bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top);
- bn_scatter5(tmp.d, top, powerbuf, i);
- }
- for (i = 3; i < 8; i += 2) {
- int j;
- bn_mul_mont_gather5(tmp.d, am.d, powerbuf, np, n0, top, i - 1);
- bn_scatter5(tmp.d, top, powerbuf, i);
- for (j = 2 * i; j < 32; j *= 2) {
- bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top);
- bn_scatter5(tmp.d, top, powerbuf, j);
- }
- }
- for (; i < 16; i += 2) {
- bn_mul_mont_gather5(tmp.d, am.d, powerbuf, np, n0, top, i - 1);
- bn_scatter5(tmp.d, top, powerbuf, i);
- bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top);
- bn_scatter5(tmp.d, top, powerbuf, 2 * i);
- }
- for (; i < 32; i += 2) {
- bn_mul_mont_gather5(tmp.d, am.d, powerbuf, np, n0, top, i - 1);
- bn_scatter5(tmp.d, top, powerbuf, i);
- }
- bits--;
- for (wvalue = 0, i = bits % 5; i >= 0; i--, bits--) {
- wvalue = (wvalue << 1) + BN_is_bit_set(p, bits);
- }
- bn_gather5(tmp.d, top, powerbuf, wvalue);
- /* At this point |bits| is 4 mod 5 and at least -1. (|bits| is the first bit
- * that has not been read yet.) */
- assert(bits >= -1 && (bits == -1 || bits % 5 == 4));
- /* Scan the exponent one window at a time starting from the most
- * significant bits.
- */
- if (top & 7) {
- while (bits >= 0) {
- for (wvalue = 0, i = 0; i < 5; i++, bits--) {
- wvalue = (wvalue << 1) + BN_is_bit_set(p, bits);
- }
- bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top);
- bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top);
- bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top);
- bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top);
- bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top);
- bn_mul_mont_gather5(tmp.d, tmp.d, powerbuf, np, n0, top, wvalue);
- }
- } else {
- const uint8_t *p_bytes = (const uint8_t *)p->d;
- int max_bits = p->top * BN_BITS2;
- assert(bits < max_bits);
- /* |p = 0| has been handled as a special case, so |max_bits| is at least
- * one word. */
- assert(max_bits >= 64);
- /* If the first bit to be read lands in the last byte, unroll the first
- * iteration to avoid reading past the bounds of |p->d|. (After the first
- * iteration, we are guaranteed to be past the last byte.) Note |bits|
- * here is the top bit, inclusive. */
- if (bits - 4 >= max_bits - 8) {
- /* Read five bits from |bits-4| through |bits|, inclusive. */
- wvalue = p_bytes[p->top * BN_BYTES - 1];
- wvalue >>= (bits - 4) & 7;
- wvalue &= 0x1f;
- bits -= 5;
- bn_power5(tmp.d, tmp.d, powerbuf, np, n0, top, wvalue);
- }
- while (bits >= 0) {
- /* Read five bits from |bits-4| through |bits|, inclusive. */
- int first_bit = bits - 4;
- wvalue = *(const uint16_t *) (p_bytes + (first_bit >> 3));
- wvalue >>= first_bit & 7;
- wvalue &= 0x1f;
- bits -= 5;
- bn_power5(tmp.d, tmp.d, powerbuf, np, n0, top, wvalue);
- }
- }
- ret = bn_from_montgomery(tmp.d, tmp.d, NULL, np, n0, top);
- tmp.top = top;
- bn_correct_top(&tmp);
- if (ret) {
- if (!BN_copy(rr, &tmp)) {
- ret = 0;
- }
- goto err; /* non-zero ret means it's not error */
- }
- } else
- #endif
- {
- if (!copy_to_prebuf(&tmp, top, powerbuf, 0, window) ||
- !copy_to_prebuf(&am, top, powerbuf, 1, window)) {
- goto err;
- }
- /* If the window size is greater than 1, then calculate
- * val[i=2..2^winsize-1]. Powers are computed as a*a^(i-1)
- * (even powers could instead be computed as (a^(i/2))^2
- * to use the slight performance advantage of sqr over mul).
- */
- if (window > 1) {
- if (!BN_mod_mul_montgomery(&tmp, &am, &am, mont, ctx) ||
- !copy_to_prebuf(&tmp, top, powerbuf, 2, window)) {
- goto err;
- }
- for (i = 3; i < numPowers; i++) {
- /* Calculate a^i = a^(i-1) * a */
- if (!BN_mod_mul_montgomery(&tmp, &am, &tmp, mont, ctx) ||
- !copy_to_prebuf(&tmp, top, powerbuf, i, window)) {
- goto err;
- }
- }
- }
- bits--;
- for (wvalue = 0, i = bits % window; i >= 0; i--, bits--) {
- wvalue = (wvalue << 1) + BN_is_bit_set(p, bits);
- }
- if (!copy_from_prebuf(&tmp, top, powerbuf, wvalue, window)) {
- goto err;
- }
- /* Scan the exponent one window at a time starting from the most
- * significant bits.
- */
- while (bits >= 0) {
- wvalue = 0; /* The 'value' of the window */
- /* Scan the window, squaring the result as we go */
- for (i = 0; i < window; i++, bits--) {
- if (!BN_mod_mul_montgomery(&tmp, &tmp, &tmp, mont, ctx)) {
- goto err;
- }
- wvalue = (wvalue << 1) + BN_is_bit_set(p, bits);
- }
- /* Fetch the appropriate pre-computed value from the pre-buf */
- if (!copy_from_prebuf(&am, top, powerbuf, wvalue, window)) {
- goto err;
- }
- /* Multiply the result into the intermediate result */
- if (!BN_mod_mul_montgomery(&tmp, &tmp, &am, mont, ctx)) {
- goto err;
- }
- }
- }
- /* Convert the final result from montgomery to standard format */
- if (!BN_from_montgomery(rr, &tmp, mont, ctx)) {
- goto err;
- }
- ret = 1;
- err:
- BN_MONT_CTX_free(new_mont);
- BN_clear_free(new_a);
- if (powerbuf != NULL) {
- OPENSSL_cleanse(powerbuf, powerbufLen);
- OPENSSL_free(powerbufFree);
- }
- return (ret);
- }
- int BN_mod_exp_mont_word(BIGNUM *rr, BN_ULONG a, const BIGNUM *p,
- const BIGNUM *m, BN_CTX *ctx,
- const BN_MONT_CTX *mont) {
- BIGNUM a_bignum;
- BN_init(&a_bignum);
- int ret = 0;
- if (!BN_set_word(&a_bignum, a)) {
- OPENSSL_PUT_ERROR(BN, ERR_R_INTERNAL_ERROR);
- goto err;
- }
- ret = BN_mod_exp_mont(rr, &a_bignum, p, m, ctx, mont);
- err:
- BN_free(&a_bignum);
- return ret;
- }
- #define TABLE_SIZE 32
- int BN_mod_exp2_mont(BIGNUM *rr, const BIGNUM *a1, const BIGNUM *p1,
- const BIGNUM *a2, const BIGNUM *p2, const BIGNUM *m,
- BN_CTX *ctx, const BN_MONT_CTX *mont) {
- BIGNUM tmp;
- BN_init(&tmp);
- int ret = 0;
- BN_MONT_CTX *new_mont = NULL;
- /* Allocate a montgomery context if it was not supplied by the caller. */
- if (mont == NULL) {
- new_mont = BN_MONT_CTX_new();
- if (new_mont == NULL || !BN_MONT_CTX_set(new_mont, m, ctx)) {
- goto err;
- }
- mont = new_mont;
- }
- /* BN_mod_mul_montgomery removes one Montgomery factor, so passing one
- * Montgomery-encoded and one non-Montgomery-encoded value gives a
- * non-Montgomery-encoded result. */
- if (!BN_mod_exp_mont(rr, a1, p1, m, ctx, mont) ||
- !BN_mod_exp_mont(&tmp, a2, p2, m, ctx, mont) ||
- !BN_to_montgomery(rr, rr, mont, ctx) ||
- !BN_mod_mul_montgomery(rr, rr, &tmp, mont, ctx)) {
- goto err;
- }
- ret = 1;
- err:
- BN_MONT_CTX_free(new_mont);
- BN_free(&tmp);
- return ret;
- }
|