| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728 |
- /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
- * All rights reserved.
- *
- * This package is an SSL implementation written
- * by Eric Young (eay@cryptsoft.com).
- * The implementation was written so as to conform with Netscapes SSL.
- *
- * This library is free for commercial and non-commercial use as long as
- * the following conditions are aheared to. The following conditions
- * apply to all code found in this distribution, be it the RC4, RSA,
- * lhash, DES, etc., code; not just the SSL code. The SSL documentation
- * included with this distribution is covered by the same copyright terms
- * except that the holder is Tim Hudson (tjh@cryptsoft.com).
- *
- * Copyright remains Eric Young's, and as such any Copyright notices in
- * the code are not to be removed.
- * If this package is used in a product, Eric Young should be given attribution
- * as the author of the parts of the library used.
- * This can be in the form of a textual message at program startup or
- * in documentation (online or textual) provided with the package.
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions
- * are met:
- * 1. Redistributions of source code must retain the copyright
- * notice, this list of conditions and the following disclaimer.
- * 2. Redistributions in binary form must reproduce the above copyright
- * notice, this list of conditions and the following disclaimer in the
- * documentation and/or other materials provided with the distribution.
- * 3. All advertising materials mentioning features or use of this software
- * must display the following acknowledgement:
- * "This product includes cryptographic software written by
- * Eric Young (eay@cryptsoft.com)"
- * The word 'cryptographic' can be left out if the rouines from the library
- * being used are not cryptographic related :-).
- * 4. If you include any Windows specific code (or a derivative thereof) from
- * the apps directory (application code) you must include an acknowledgement:
- * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
- *
- * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
- * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
- * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
- * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
- * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
- * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
- * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
- * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
- * SUCH DAMAGE.
- *
- * The licence and distribution terms for any publically available version or
- * derivative of this code cannot be changed. i.e. this code cannot simply be
- * copied and put under another distribution licence
- * [including the GNU Public Licence.] */
- #include <openssl/bn.h>
- #include <assert.h>
- #include <limits.h>
- #include <openssl/err.h>
- #include "internal.h"
- #if !defined(BN_ULLONG)
- /* bn_div_words divides a double-width |h|,|l| by |d| and returns the result,
- * which must fit in a |BN_ULONG|. */
- static BN_ULONG bn_div_words(BN_ULONG h, BN_ULONG l, BN_ULONG d) {
- BN_ULONG dh, dl, q, ret = 0, th, tl, t;
- int i, count = 2;
- if (d == 0) {
- return BN_MASK2;
- }
- i = BN_num_bits_word(d);
- assert((i == BN_BITS2) || (h <= (BN_ULONG)1 << i));
- i = BN_BITS2 - i;
- if (h >= d) {
- h -= d;
- }
- if (i) {
- d <<= i;
- h = (h << i) | (l >> (BN_BITS2 - i));
- l <<= i;
- }
- dh = (d & BN_MASK2h) >> BN_BITS4;
- dl = (d & BN_MASK2l);
- for (;;) {
- if ((h >> BN_BITS4) == dh) {
- q = BN_MASK2l;
- } else {
- q = h / dh;
- }
- th = q * dh;
- tl = dl * q;
- for (;;) {
- t = h - th;
- if ((t & BN_MASK2h) ||
- ((tl) <= ((t << BN_BITS4) | ((l & BN_MASK2h) >> BN_BITS4)))) {
- break;
- }
- q--;
- th -= dh;
- tl -= dl;
- }
- t = (tl >> BN_BITS4);
- tl = (tl << BN_BITS4) & BN_MASK2h;
- th += t;
- if (l < tl) {
- th++;
- }
- l -= tl;
- if (h < th) {
- h += d;
- q--;
- }
- h -= th;
- if (--count == 0) {
- break;
- }
- ret = q << BN_BITS4;
- h = ((h << BN_BITS4) | (l >> BN_BITS4)) & BN_MASK2;
- l = (l & BN_MASK2l) << BN_BITS4;
- }
- ret |= q;
- return ret;
- }
- #endif /* !defined(BN_ULLONG) */
- static inline void bn_div_rem_words(BN_ULONG *quotient_out, BN_ULONG *rem_out,
- BN_ULONG n0, BN_ULONG n1, BN_ULONG d0) {
- /* GCC and Clang generate function calls to |__udivdi3| and |__umoddi3| when
- * the |BN_ULLONG|-based C code is used.
- *
- * GCC bugs:
- * * https://gcc.gnu.org/bugzilla/show_bug.cgi?id=14224
- * * https://gcc.gnu.org/bugzilla/show_bug.cgi?id=43721
- * * https://gcc.gnu.org/bugzilla/show_bug.cgi?id=54183
- * * https://gcc.gnu.org/bugzilla/show_bug.cgi?id=58897
- * * https://gcc.gnu.org/bugzilla/show_bug.cgi?id=65668
- *
- * Clang bugs:
- * * https://llvm.org/bugs/show_bug.cgi?id=6397
- * * https://llvm.org/bugs/show_bug.cgi?id=12418
- *
- * These issues aren't specific to x86 and x86_64, so it might be worthwhile
- * to add more assembly language implementations. */
- #if !defined(OPENSSL_NO_ASM) && defined(OPENSSL_X86) && defined(__GNUC__)
- __asm__ volatile (
- "divl %4"
- : "=a"(*quotient_out), "=d"(*rem_out)
- : "a"(n1), "d"(n0), "rm"(d0)
- : "cc" );
- #elif !defined(OPENSSL_NO_ASM) && defined(OPENSSL_X86_64) && defined(__GNUC__)
- __asm__ volatile (
- "divq %4"
- : "=a"(*quotient_out), "=d"(*rem_out)
- : "a"(n1), "d"(n0), "rm"(d0)
- : "cc" );
- #else
- #if defined(BN_ULLONG)
- BN_ULLONG n = (((BN_ULLONG)n0) << BN_BITS2) | n1;
- *quotient_out = (BN_ULONG)(n / d0);
- #else
- *quotient_out = bn_div_words(n0, n1, d0);
- #endif
- *rem_out = n1 - (*quotient_out * d0);
- #endif
- }
- /* BN_div computes dv := num / divisor, rounding towards
- * zero, and sets up rm such that dv*divisor + rm = num holds.
- * Thus:
- * dv->neg == num->neg ^ divisor->neg (unless the result is zero)
- * rm->neg == num->neg (unless the remainder is zero)
- * If 'dv' or 'rm' is NULL, the respective value is not returned.
- *
- * This was specifically designed to contain fewer branches that may leak
- * sensitive information; see "New Branch Prediction Vulnerabilities in OpenSSL
- * and Necessary Software Countermeasures" by Onur Acıçmez, Shay Gueron, and
- * Jean-Pierre Seifert. */
- int BN_div(BIGNUM *dv, BIGNUM *rm, const BIGNUM *num, const BIGNUM *divisor,
- BN_CTX *ctx) {
- int norm_shift, i, loop;
- BIGNUM *tmp, wnum, *snum, *sdiv, *res;
- BN_ULONG *resp, *wnump;
- BN_ULONG d0, d1;
- int num_n, div_n;
- /* Invalid zero-padding would have particularly bad consequences
- * so don't just rely on bn_check_top() here */
- if ((num->top > 0 && num->d[num->top - 1] == 0) ||
- (divisor->top > 0 && divisor->d[divisor->top - 1] == 0)) {
- OPENSSL_PUT_ERROR(BN, BN_R_NOT_INITIALIZED);
- return 0;
- }
- if (BN_is_zero(divisor)) {
- OPENSSL_PUT_ERROR(BN, BN_R_DIV_BY_ZERO);
- return 0;
- }
- BN_CTX_start(ctx);
- tmp = BN_CTX_get(ctx);
- snum = BN_CTX_get(ctx);
- sdiv = BN_CTX_get(ctx);
- if (dv == NULL) {
- res = BN_CTX_get(ctx);
- } else {
- res = dv;
- }
- if (sdiv == NULL || res == NULL || tmp == NULL || snum == NULL) {
- goto err;
- }
- /* First we normalise the numbers */
- norm_shift = BN_BITS2 - ((BN_num_bits(divisor)) % BN_BITS2);
- if (!(BN_lshift(sdiv, divisor, norm_shift))) {
- goto err;
- }
- sdiv->neg = 0;
- norm_shift += BN_BITS2;
- if (!(BN_lshift(snum, num, norm_shift))) {
- goto err;
- }
- snum->neg = 0;
- /* Since we don't want to have special-case logic for the case where snum is
- * larger than sdiv, we pad snum with enough zeroes without changing its
- * value. */
- if (snum->top <= sdiv->top + 1) {
- if (bn_wexpand(snum, sdiv->top + 2) == NULL) {
- goto err;
- }
- for (i = snum->top; i < sdiv->top + 2; i++) {
- snum->d[i] = 0;
- }
- snum->top = sdiv->top + 2;
- } else {
- if (bn_wexpand(snum, snum->top + 1) == NULL) {
- goto err;
- }
- snum->d[snum->top] = 0;
- snum->top++;
- }
- div_n = sdiv->top;
- num_n = snum->top;
- loop = num_n - div_n;
- /* Lets setup a 'window' into snum
- * This is the part that corresponds to the current
- * 'area' being divided */
- wnum.neg = 0;
- wnum.d = &(snum->d[loop]);
- wnum.top = div_n;
- /* only needed when BN_ucmp messes up the values between top and max */
- wnum.dmax = snum->dmax - loop; /* so we don't step out of bounds */
- /* Get the top 2 words of sdiv */
- /* div_n=sdiv->top; */
- d0 = sdiv->d[div_n - 1];
- d1 = (div_n == 1) ? 0 : sdiv->d[div_n - 2];
- /* pointer to the 'top' of snum */
- wnump = &(snum->d[num_n - 1]);
- /* Setup to 'res' */
- res->neg = (num->neg ^ divisor->neg);
- if (!bn_wexpand(res, (loop + 1))) {
- goto err;
- }
- res->top = loop - 1;
- resp = &(res->d[loop - 1]);
- /* space for temp */
- if (!bn_wexpand(tmp, (div_n + 1))) {
- goto err;
- }
- /* if res->top == 0 then clear the neg value otherwise decrease
- * the resp pointer */
- if (res->top == 0) {
- res->neg = 0;
- } else {
- resp--;
- }
- for (i = 0; i < loop - 1; i++, wnump--, resp--) {
- BN_ULONG q, l0;
- /* the first part of the loop uses the top two words of snum and sdiv to
- * calculate a BN_ULONG q such that | wnum - sdiv * q | < sdiv */
- BN_ULONG n0, n1, rem = 0;
- n0 = wnump[0];
- n1 = wnump[-1];
- if (n0 == d0) {
- q = BN_MASK2;
- } else {
- /* n0 < d0 */
- bn_div_rem_words(&q, &rem, n0, n1, d0);
- #ifdef BN_ULLONG
- BN_ULLONG t2 = (BN_ULLONG)d1 * q;
- for (;;) {
- if (t2 <= ((((BN_ULLONG)rem) << BN_BITS2) | wnump[-2])) {
- break;
- }
- q--;
- rem += d0;
- if (rem < d0) {
- break; /* don't let rem overflow */
- }
- t2 -= d1;
- }
- #else /* !BN_ULLONG */
- BN_ULONG t2l, t2h;
- BN_UMULT_LOHI(t2l, t2h, d1, q);
- for (;;) {
- if ((t2h < rem) || ((t2h == rem) && (t2l <= wnump[-2]))) {
- break;
- }
- q--;
- rem += d0;
- if (rem < d0) {
- break; /* don't let rem overflow */
- }
- if (t2l < d1) {
- t2h--;
- }
- t2l -= d1;
- }
- #endif /* !BN_ULLONG */
- }
- l0 = bn_mul_words(tmp->d, sdiv->d, div_n, q);
- tmp->d[div_n] = l0;
- wnum.d--;
- /* ingore top values of the bignums just sub the two
- * BN_ULONG arrays with bn_sub_words */
- if (bn_sub_words(wnum.d, wnum.d, tmp->d, div_n + 1)) {
- /* Note: As we have considered only the leading
- * two BN_ULONGs in the calculation of q, sdiv * q
- * might be greater than wnum (but then (q-1) * sdiv
- * is less or equal than wnum)
- */
- q--;
- if (bn_add_words(wnum.d, wnum.d, sdiv->d, div_n)) {
- /* we can't have an overflow here (assuming
- * that q != 0, but if q == 0 then tmp is
- * zero anyway) */
- (*wnump)++;
- }
- }
- /* store part of the result */
- *resp = q;
- }
- bn_correct_top(snum);
- if (rm != NULL) {
- /* Keep a copy of the neg flag in num because if rm==num
- * BN_rshift() will overwrite it.
- */
- int neg = num->neg;
- if (!BN_rshift(rm, snum, norm_shift)) {
- goto err;
- }
- if (!BN_is_zero(rm)) {
- rm->neg = neg;
- }
- }
- bn_correct_top(res);
- BN_CTX_end(ctx);
- return 1;
- err:
- BN_CTX_end(ctx);
- return 0;
- }
- int BN_nnmod(BIGNUM *r, const BIGNUM *m, const BIGNUM *d, BN_CTX *ctx) {
- if (!(BN_mod(r, m, d, ctx))) {
- return 0;
- }
- if (!r->neg) {
- return 1;
- }
- /* now -|d| < r < 0, so we have to set r := r + |d|. */
- return (d->neg ? BN_sub : BN_add)(r, r, d);
- }
- int BN_mod_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *m,
- BN_CTX *ctx) {
- if (!BN_add(r, a, b)) {
- return 0;
- }
- return BN_nnmod(r, r, m, ctx);
- }
- int BN_mod_add_quick(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
- const BIGNUM *m) {
- if (!BN_uadd(r, a, b)) {
- return 0;
- }
- if (BN_ucmp(r, m) >= 0) {
- return BN_usub(r, r, m);
- }
- return 1;
- }
- int BN_mod_sub(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *m,
- BN_CTX *ctx) {
- if (!BN_sub(r, a, b)) {
- return 0;
- }
- return BN_nnmod(r, r, m, ctx);
- }
- /* BN_mod_sub variant that may be used if both a and b are non-negative
- * and less than m */
- int BN_mod_sub_quick(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
- const BIGNUM *m) {
- if (!BN_sub(r, a, b)) {
- return 0;
- }
- if (r->neg) {
- return BN_add(r, r, m);
- }
- return 1;
- }
- int BN_mod_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *m,
- BN_CTX *ctx) {
- BIGNUM *t;
- int ret = 0;
- BN_CTX_start(ctx);
- t = BN_CTX_get(ctx);
- if (t == NULL) {
- goto err;
- }
- if (a == b) {
- if (!BN_sqr(t, a, ctx)) {
- goto err;
- }
- } else {
- if (!BN_mul(t, a, b, ctx)) {
- goto err;
- }
- }
- if (!BN_nnmod(r, t, m, ctx)) {
- goto err;
- }
- ret = 1;
- err:
- BN_CTX_end(ctx);
- return ret;
- }
- int BN_mod_sqr(BIGNUM *r, const BIGNUM *a, const BIGNUM *m, BN_CTX *ctx) {
- if (!BN_sqr(r, a, ctx)) {
- return 0;
- }
- /* r->neg == 0, thus we don't need BN_nnmod */
- return BN_mod(r, r, m, ctx);
- }
- int BN_mod_lshift(BIGNUM *r, const BIGNUM *a, int n, const BIGNUM *m,
- BN_CTX *ctx) {
- BIGNUM *abs_m = NULL;
- int ret;
- if (!BN_nnmod(r, a, m, ctx)) {
- return 0;
- }
- if (m->neg) {
- abs_m = BN_dup(m);
- if (abs_m == NULL) {
- return 0;
- }
- abs_m->neg = 0;
- }
- ret = BN_mod_lshift_quick(r, r, n, (abs_m ? abs_m : m));
- BN_free(abs_m);
- return ret;
- }
- int BN_mod_lshift_quick(BIGNUM *r, const BIGNUM *a, int n, const BIGNUM *m) {
- if (r != a) {
- if (BN_copy(r, a) == NULL) {
- return 0;
- }
- }
- while (n > 0) {
- int max_shift;
- /* 0 < r < m */
- max_shift = BN_num_bits(m) - BN_num_bits(r);
- /* max_shift >= 0 */
- if (max_shift < 0) {
- OPENSSL_PUT_ERROR(BN, BN_R_INPUT_NOT_REDUCED);
- return 0;
- }
- if (max_shift > n) {
- max_shift = n;
- }
- if (max_shift) {
- if (!BN_lshift(r, r, max_shift)) {
- return 0;
- }
- n -= max_shift;
- } else {
- if (!BN_lshift1(r, r)) {
- return 0;
- }
- --n;
- }
- /* BN_num_bits(r) <= BN_num_bits(m) */
- if (BN_cmp(r, m) >= 0) {
- if (!BN_sub(r, r, m)) {
- return 0;
- }
- }
- }
- return 1;
- }
- int BN_mod_lshift1(BIGNUM *r, const BIGNUM *a, const BIGNUM *m, BN_CTX *ctx) {
- if (!BN_lshift1(r, a)) {
- return 0;
- }
- return BN_nnmod(r, r, m, ctx);
- }
- int BN_mod_lshift1_quick(BIGNUM *r, const BIGNUM *a, const BIGNUM *m) {
- if (!BN_lshift1(r, a)) {
- return 0;
- }
- if (BN_cmp(r, m) >= 0) {
- return BN_sub(r, r, m);
- }
- return 1;
- }
- BN_ULONG BN_div_word(BIGNUM *a, BN_ULONG w) {
- BN_ULONG ret = 0;
- int i, j;
- w &= BN_MASK2;
- if (!w) {
- /* actually this an error (division by zero) */
- return (BN_ULONG) - 1;
- }
- if (a->top == 0) {
- return 0;
- }
- /* normalize input for |bn_div_rem_words|. */
- j = BN_BITS2 - BN_num_bits_word(w);
- w <<= j;
- if (!BN_lshift(a, a, j)) {
- return (BN_ULONG) - 1;
- }
- for (i = a->top - 1; i >= 0; i--) {
- BN_ULONG l = a->d[i];
- BN_ULONG d;
- BN_ULONG unused_rem;
- bn_div_rem_words(&d, &unused_rem, ret, l, w);
- ret = (l - ((d * w) & BN_MASK2)) & BN_MASK2;
- a->d[i] = d;
- }
- if ((a->top > 0) && (a->d[a->top - 1] == 0)) {
- a->top--;
- }
- if (a->top == 0) {
- a->neg = 0;
- }
- ret >>= j;
- return ret;
- }
- BN_ULONG BN_mod_word(const BIGNUM *a, BN_ULONG w) {
- #ifndef BN_ULLONG
- BN_ULONG ret = 0;
- #else
- BN_ULLONG ret = 0;
- #endif
- int i;
- if (w == 0) {
- return (BN_ULONG) -1;
- }
- #ifndef BN_ULLONG
- /* If |w| is too long and we don't have |BN_ULLONG| then we need to fall back
- * to using |BN_div_word|. */
- if (w > ((BN_ULONG)1 << BN_BITS4)) {
- BIGNUM *tmp = BN_dup(a);
- if (tmp == NULL) {
- return (BN_ULONG)-1;
- }
- ret = BN_div_word(tmp, w);
- BN_free(tmp);
- return ret;
- }
- #endif
- w &= BN_MASK2;
- for (i = a->top - 1; i >= 0; i--) {
- #ifndef BN_ULLONG
- ret = ((ret << BN_BITS4) | ((a->d[i] >> BN_BITS4) & BN_MASK2l)) % w;
- ret = ((ret << BN_BITS4) | (a->d[i] & BN_MASK2l)) % w;
- #else
- ret = (BN_ULLONG)(((ret << (BN_ULLONG)BN_BITS2) | a->d[i]) % (BN_ULLONG)w);
- #endif
- }
- return (BN_ULONG)ret;
- }
- int BN_mod_pow2(BIGNUM *r, const BIGNUM *a, size_t e) {
- if (e == 0 || a->top == 0) {
- BN_zero(r);
- return 1;
- }
- size_t num_words = 1 + ((e - 1) / BN_BITS2);
- /* If |a| definitely has less than |e| bits, just BN_copy. */
- if ((size_t) a->top < num_words) {
- return BN_copy(r, a) != NULL;
- }
- /* Otherwise, first make sure we have enough space in |r|.
- * Note that this will fail if num_words > INT_MAX. */
- if (bn_wexpand(r, num_words) == NULL) {
- return 0;
- }
- /* Copy the content of |a| into |r|. */
- OPENSSL_memcpy(r->d, a->d, num_words * sizeof(BN_ULONG));
- /* If |e| isn't word-aligned, we have to mask off some of our bits. */
- size_t top_word_exponent = e % (sizeof(BN_ULONG) * 8);
- if (top_word_exponent != 0) {
- r->d[num_words - 1] &= (((BN_ULONG) 1) << top_word_exponent) - 1;
- }
- /* Fill in the remaining fields of |r|. */
- r->neg = a->neg;
- r->top = (int) num_words;
- bn_correct_top(r);
- return 1;
- }
- int BN_nnmod_pow2(BIGNUM *r, const BIGNUM *a, size_t e) {
- if (!BN_mod_pow2(r, a, e)) {
- return 0;
- }
- /* If the returned value was non-negative, we're done. */
- if (BN_is_zero(r) || !r->neg) {
- return 1;
- }
- size_t num_words = 1 + (e - 1) / BN_BITS2;
- /* Expand |r| to the size of our modulus. */
- if (bn_wexpand(r, num_words) == NULL) {
- return 0;
- }
- /* Clear the upper words of |r|. */
- OPENSSL_memset(&r->d[r->top], 0, (num_words - r->top) * BN_BYTES);
- /* Set parameters of |r|. */
- r->neg = 0;
- r->top = (int) num_words;
- /* Now, invert every word. The idea here is that we want to compute 2^e-|x|,
- * which is actually equivalent to the twos-complement representation of |x|
- * in |e| bits, which is -x = ~x + 1. */
- for (int i = 0; i < r->top; i++) {
- r->d[i] = ~r->d[i];
- }
- /* If our exponent doesn't span the top word, we have to mask the rest. */
- size_t top_word_exponent = e % BN_BITS2;
- if (top_word_exponent != 0) {
- r->d[r->top - 1] &= (((BN_ULONG) 1) << top_word_exponent) - 1;
- }
- /* Keep the correct_top invariant for BN_add. */
- bn_correct_top(r);
- /* Finally, add one, for the reason described above. */
- return BN_add(r, r, BN_value_one());
- }
|