tls_cbc.c 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482
  1. /* ====================================================================
  2. * Copyright (c) 2012 The OpenSSL Project. All rights reserved.
  3. *
  4. * Redistribution and use in source and binary forms, with or without
  5. * modification, are permitted provided that the following conditions
  6. * are met:
  7. *
  8. * 1. Redistributions of source code must retain the above copyright
  9. * notice, this list of conditions and the following disclaimer.
  10. *
  11. * 2. Redistributions in binary form must reproduce the above copyright
  12. * notice, this list of conditions and the following disclaimer in
  13. * the documentation and/or other materials provided with the
  14. * distribution.
  15. *
  16. * 3. All advertising materials mentioning features or use of this
  17. * software must display the following acknowledgment:
  18. * "This product includes software developed by the OpenSSL Project
  19. * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
  20. *
  21. * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
  22. * endorse or promote products derived from this software without
  23. * prior written permission. For written permission, please contact
  24. * openssl-core@openssl.org.
  25. *
  26. * 5. Products derived from this software may not be called "OpenSSL"
  27. * nor may "OpenSSL" appear in their names without prior written
  28. * permission of the OpenSSL Project.
  29. *
  30. * 6. Redistributions of any form whatsoever must retain the following
  31. * acknowledgment:
  32. * "This product includes software developed by the OpenSSL Project
  33. * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
  34. *
  35. * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
  36. * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  37. * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
  38. * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
  39. * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  40. * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
  41. * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
  42. * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
  43. * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
  44. * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
  45. * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
  46. * OF THE POSSIBILITY OF SUCH DAMAGE.
  47. * ====================================================================
  48. *
  49. * This product includes cryptographic software written by Eric Young
  50. * (eay@cryptsoft.com). This product includes software written by Tim
  51. * Hudson (tjh@cryptsoft.com). */
  52. #include <assert.h>
  53. #include <string.h>
  54. #include <openssl/digest.h>
  55. #include <openssl/nid.h>
  56. #include <openssl/sha.h>
  57. #include "../internal.h"
  58. #include "internal.h"
  59. /* TODO(davidben): unsigned should be size_t. The various constant_time
  60. * functions need to be switched to size_t. */
  61. /* MAX_HASH_BIT_COUNT_BYTES is the maximum number of bytes in the hash's length
  62. * field. (SHA-384/512 have 128-bit length.) */
  63. #define MAX_HASH_BIT_COUNT_BYTES 16
  64. /* MAX_HASH_BLOCK_SIZE is the maximum hash block size that we'll support.
  65. * Currently SHA-384/512 has a 128-byte block size and that's the largest
  66. * supported by TLS.) */
  67. #define MAX_HASH_BLOCK_SIZE 128
  68. int EVP_tls_cbc_remove_padding(unsigned *out_padding_ok, unsigned *out_len,
  69. const uint8_t *in, unsigned in_len,
  70. unsigned block_size, unsigned mac_size) {
  71. unsigned padding_length, good, to_check, i;
  72. const unsigned overhead = 1 /* padding length byte */ + mac_size;
  73. /* These lengths are all public so we can test them in non-constant time. */
  74. if (overhead > in_len) {
  75. return 0;
  76. }
  77. padding_length = in[in_len - 1];
  78. good = constant_time_ge(in_len, overhead + padding_length);
  79. /* The padding consists of a length byte at the end of the record and
  80. * then that many bytes of padding, all with the same value as the
  81. * length byte. Thus, with the length byte included, there are i+1
  82. * bytes of padding.
  83. *
  84. * We can't check just |padding_length+1| bytes because that leaks
  85. * decrypted information. Therefore we always have to check the maximum
  86. * amount of padding possible. (Again, the length of the record is
  87. * public information so we can use it.) */
  88. to_check = 256; /* maximum amount of padding, inc length byte. */
  89. if (to_check > in_len) {
  90. to_check = in_len;
  91. }
  92. for (i = 0; i < to_check; i++) {
  93. uint8_t mask = constant_time_ge_8(padding_length, i);
  94. uint8_t b = in[in_len - 1 - i];
  95. /* The final |padding_length+1| bytes should all have the value
  96. * |padding_length|. Therefore the XOR should be zero. */
  97. good &= ~(mask & (padding_length ^ b));
  98. }
  99. /* If any of the final |padding_length+1| bytes had the wrong value,
  100. * one or more of the lower eight bits of |good| will be cleared. */
  101. good = constant_time_eq(0xff, good & 0xff);
  102. /* Always treat |padding_length| as zero on error. If, assuming block size of
  103. * 16, a padding of [<15 arbitrary bytes> 15] treated |padding_length| as 16
  104. * and returned -1, distinguishing good MAC and bad padding from bad MAC and
  105. * bad padding would give POODLE's padding oracle. */
  106. padding_length = good & (padding_length + 1);
  107. *out_len = in_len - padding_length;
  108. *out_padding_ok = good;
  109. return 1;
  110. }
  111. void EVP_tls_cbc_copy_mac(uint8_t *out, unsigned md_size,
  112. const uint8_t *in, unsigned in_len,
  113. unsigned orig_len) {
  114. uint8_t rotated_mac1[EVP_MAX_MD_SIZE], rotated_mac2[EVP_MAX_MD_SIZE];
  115. uint8_t *rotated_mac = rotated_mac1;
  116. uint8_t *rotated_mac_tmp = rotated_mac2;
  117. /* mac_end is the index of |in| just after the end of the MAC. */
  118. unsigned mac_end = in_len;
  119. unsigned mac_start = mac_end - md_size;
  120. assert(orig_len >= in_len);
  121. assert(in_len >= md_size);
  122. assert(md_size <= EVP_MAX_MD_SIZE);
  123. /* scan_start contains the number of bytes that we can ignore because
  124. * the MAC's position can only vary by 255 bytes. */
  125. unsigned scan_start = 0;
  126. /* This information is public so it's safe to branch based on it. */
  127. if (orig_len > md_size + 255 + 1) {
  128. scan_start = orig_len - (md_size + 255 + 1);
  129. }
  130. unsigned rotate_offset = 0;
  131. uint8_t mac_started = 0;
  132. OPENSSL_memset(rotated_mac, 0, md_size);
  133. for (unsigned i = scan_start, j = 0; i < orig_len; i++, j++) {
  134. if (j >= md_size) {
  135. j -= md_size;
  136. }
  137. unsigned is_mac_start = constant_time_eq(i, mac_start);
  138. mac_started |= is_mac_start;
  139. uint8_t mac_ended = constant_time_ge_8(i, mac_end);
  140. rotated_mac[j] |= in[i] & mac_started & ~mac_ended;
  141. /* Save the offset that |mac_start| is mapped to. */
  142. rotate_offset |= j & is_mac_start;
  143. }
  144. /* Now rotate the MAC. We rotate in log(md_size) steps, one for each bit
  145. * position. */
  146. for (unsigned offset = 1; offset < md_size;
  147. offset <<= 1, rotate_offset >>= 1) {
  148. /* Rotate by |offset| iff the corresponding bit is set in
  149. * |rotate_offset|, placing the result in |rotated_mac_tmp|. */
  150. const uint8_t skip_rotate = (rotate_offset & 1) - 1;
  151. for (unsigned i = 0, j = offset; i < md_size; i++, j++) {
  152. if (j >= md_size) {
  153. j -= md_size;
  154. }
  155. rotated_mac_tmp[i] =
  156. constant_time_select_8(skip_rotate, rotated_mac[i], rotated_mac[j]);
  157. }
  158. /* Swap pointers so |rotated_mac| contains the (possibly) rotated value.
  159. * Note the number of iterations and thus the identity of these pointers is
  160. * public information. */
  161. uint8_t *tmp = rotated_mac;
  162. rotated_mac = rotated_mac_tmp;
  163. rotated_mac_tmp = tmp;
  164. }
  165. OPENSSL_memcpy(out, rotated_mac, md_size);
  166. }
  167. /* u32toBE serialises an unsigned, 32-bit number (n) as four bytes at (p) in
  168. * big-endian order. The value of p is advanced by four. */
  169. #define u32toBE(n, p) \
  170. do { \
  171. *((p)++) = (uint8_t)((n) >> 24); \
  172. *((p)++) = (uint8_t)((n) >> 16); \
  173. *((p)++) = (uint8_t)((n) >> 8); \
  174. *((p)++) = (uint8_t)((n)); \
  175. } while (0)
  176. /* u64toBE serialises an unsigned, 64-bit number (n) as eight bytes at (p) in
  177. * big-endian order. The value of p is advanced by eight. */
  178. #define u64toBE(n, p) \
  179. do { \
  180. *((p)++) = (uint8_t)((n) >> 56); \
  181. *((p)++) = (uint8_t)((n) >> 48); \
  182. *((p)++) = (uint8_t)((n) >> 40); \
  183. *((p)++) = (uint8_t)((n) >> 32); \
  184. *((p)++) = (uint8_t)((n) >> 24); \
  185. *((p)++) = (uint8_t)((n) >> 16); \
  186. *((p)++) = (uint8_t)((n) >> 8); \
  187. *((p)++) = (uint8_t)((n)); \
  188. } while (0)
  189. /* These functions serialize the state of a hash and thus perform the standard
  190. * "final" operation without adding the padding and length that such a function
  191. * typically does. */
  192. static void tls1_sha1_final_raw(void *ctx, uint8_t *md_out) {
  193. SHA_CTX *sha1 = ctx;
  194. u32toBE(sha1->h[0], md_out);
  195. u32toBE(sha1->h[1], md_out);
  196. u32toBE(sha1->h[2], md_out);
  197. u32toBE(sha1->h[3], md_out);
  198. u32toBE(sha1->h[4], md_out);
  199. }
  200. #define LARGEST_DIGEST_CTX SHA_CTX
  201. static void tls1_sha256_final_raw(void *ctx, uint8_t *md_out) {
  202. SHA256_CTX *sha256 = ctx;
  203. unsigned i;
  204. for (i = 0; i < 8; i++) {
  205. u32toBE(sha256->h[i], md_out);
  206. }
  207. }
  208. #undef LARGEST_DIGEST_CTX
  209. #define LARGEST_DIGEST_CTX SHA256_CTX
  210. static void tls1_sha512_final_raw(void *ctx, uint8_t *md_out) {
  211. SHA512_CTX *sha512 = ctx;
  212. unsigned i;
  213. for (i = 0; i < 8; i++) {
  214. u64toBE(sha512->h[i], md_out);
  215. }
  216. }
  217. #undef LARGEST_DIGEST_CTX
  218. #define LARGEST_DIGEST_CTX SHA512_CTX
  219. int EVP_tls_cbc_record_digest_supported(const EVP_MD *md) {
  220. switch (EVP_MD_type(md)) {
  221. case NID_sha1:
  222. case NID_sha256:
  223. case NID_sha384:
  224. return 1;
  225. default:
  226. return 0;
  227. }
  228. }
  229. int EVP_tls_cbc_digest_record(const EVP_MD *md, uint8_t *md_out,
  230. size_t *md_out_size, const uint8_t header[13],
  231. const uint8_t *data, size_t data_plus_mac_size,
  232. size_t data_plus_mac_plus_padding_size,
  233. const uint8_t *mac_secret,
  234. unsigned mac_secret_length) {
  235. union {
  236. double align;
  237. uint8_t c[sizeof(LARGEST_DIGEST_CTX)];
  238. } md_state;
  239. void (*md_final_raw)(void *ctx, uint8_t *md_out);
  240. void (*md_transform)(void *ctx, const uint8_t *block);
  241. unsigned md_size, md_block_size = 64;
  242. unsigned len, max_mac_bytes, num_blocks, num_starting_blocks, k,
  243. mac_end_offset, c, index_a, index_b;
  244. unsigned int bits; /* at most 18 bits */
  245. uint8_t length_bytes[MAX_HASH_BIT_COUNT_BYTES];
  246. /* hmac_pad is the masked HMAC key. */
  247. uint8_t hmac_pad[MAX_HASH_BLOCK_SIZE];
  248. uint8_t first_block[MAX_HASH_BLOCK_SIZE];
  249. uint8_t mac_out[EVP_MAX_MD_SIZE];
  250. unsigned i, j, md_out_size_u;
  251. EVP_MD_CTX md_ctx;
  252. /* mdLengthSize is the number of bytes in the length field that terminates
  253. * the hash. */
  254. unsigned md_length_size = 8;
  255. /* This is a, hopefully redundant, check that allows us to forget about
  256. * many possible overflows later in this function. */
  257. assert(data_plus_mac_plus_padding_size < 1024 * 1024);
  258. switch (EVP_MD_type(md)) {
  259. case NID_sha1:
  260. SHA1_Init((SHA_CTX *)md_state.c);
  261. md_final_raw = tls1_sha1_final_raw;
  262. md_transform =
  263. (void (*)(void *ctx, const uint8_t *block))SHA1_Transform;
  264. md_size = 20;
  265. break;
  266. case NID_sha256:
  267. SHA256_Init((SHA256_CTX *)md_state.c);
  268. md_final_raw = tls1_sha256_final_raw;
  269. md_transform =
  270. (void (*)(void *ctx, const uint8_t *block))SHA256_Transform;
  271. md_size = 32;
  272. break;
  273. case NID_sha384:
  274. SHA384_Init((SHA512_CTX *)md_state.c);
  275. md_final_raw = tls1_sha512_final_raw;
  276. md_transform =
  277. (void (*)(void *ctx, const uint8_t *block))SHA512_Transform;
  278. md_size = 384 / 8;
  279. md_block_size = 128;
  280. md_length_size = 16;
  281. break;
  282. default:
  283. /* EVP_tls_cbc_record_digest_supported should have been called first to
  284. * check that the hash function is supported. */
  285. assert(0);
  286. *md_out_size = 0;
  287. return 0;
  288. }
  289. assert(md_length_size <= MAX_HASH_BIT_COUNT_BYTES);
  290. assert(md_block_size <= MAX_HASH_BLOCK_SIZE);
  291. assert(md_size <= EVP_MAX_MD_SIZE);
  292. static const unsigned kHeaderLength = 13;
  293. /* kVarianceBlocks is the number of blocks of the hash that we have to
  294. * calculate in constant time because they could be altered by the
  295. * padding value.
  296. *
  297. * TLSv1 has MACs up to 48 bytes long (SHA-384) and the padding is not
  298. * required to be minimal. Therefore we say that the final six blocks
  299. * can vary based on the padding. */
  300. static const unsigned kVarianceBlocks = 6;
  301. /* From now on we're dealing with the MAC, which conceptually has 13
  302. * bytes of `header' before the start of the data. */
  303. len = data_plus_mac_plus_padding_size + kHeaderLength;
  304. /* max_mac_bytes contains the maximum bytes of bytes in the MAC, including
  305. * |header|, assuming that there's no padding. */
  306. max_mac_bytes = len - md_size - 1;
  307. /* num_blocks is the maximum number of hash blocks. */
  308. num_blocks =
  309. (max_mac_bytes + 1 + md_length_size + md_block_size - 1) / md_block_size;
  310. /* In order to calculate the MAC in constant time we have to handle
  311. * the final blocks specially because the padding value could cause the
  312. * end to appear somewhere in the final |kVarianceBlocks| blocks and we
  313. * can't leak where. However, |num_starting_blocks| worth of data can
  314. * be hashed right away because no padding value can affect whether
  315. * they are plaintext. */
  316. num_starting_blocks = 0;
  317. /* k is the starting byte offset into the conceptual header||data where
  318. * we start processing. */
  319. k = 0;
  320. /* mac_end_offset is the index just past the end of the data to be
  321. * MACed. */
  322. mac_end_offset = data_plus_mac_size + kHeaderLength - md_size;
  323. /* c is the index of the 0x80 byte in the final hash block that
  324. * contains application data. */
  325. c = mac_end_offset % md_block_size;
  326. /* index_a is the hash block number that contains the 0x80 terminating
  327. * value. */
  328. index_a = mac_end_offset / md_block_size;
  329. /* index_b is the hash block number that contains the 64-bit hash
  330. * length, in bits. */
  331. index_b = (mac_end_offset + md_length_size) / md_block_size;
  332. /* bits is the hash-length in bits. It includes the additional hash
  333. * block for the masked HMAC key. */
  334. if (num_blocks > kVarianceBlocks) {
  335. num_starting_blocks = num_blocks - kVarianceBlocks;
  336. k = md_block_size * num_starting_blocks;
  337. }
  338. bits = 8 * mac_end_offset;
  339. /* Compute the initial HMAC block. */
  340. bits += 8 * md_block_size;
  341. OPENSSL_memset(hmac_pad, 0, md_block_size);
  342. assert(mac_secret_length <= sizeof(hmac_pad));
  343. OPENSSL_memcpy(hmac_pad, mac_secret, mac_secret_length);
  344. for (i = 0; i < md_block_size; i++) {
  345. hmac_pad[i] ^= 0x36;
  346. }
  347. md_transform(md_state.c, hmac_pad);
  348. OPENSSL_memset(length_bytes, 0, md_length_size - 4);
  349. length_bytes[md_length_size - 4] = (uint8_t)(bits >> 24);
  350. length_bytes[md_length_size - 3] = (uint8_t)(bits >> 16);
  351. length_bytes[md_length_size - 2] = (uint8_t)(bits >> 8);
  352. length_bytes[md_length_size - 1] = (uint8_t)bits;
  353. if (k > 0) {
  354. /* k is a multiple of md_block_size. */
  355. OPENSSL_memcpy(first_block, header, 13);
  356. OPENSSL_memcpy(first_block + 13, data, md_block_size - 13);
  357. md_transform(md_state.c, first_block);
  358. for (i = 1; i < k / md_block_size; i++) {
  359. md_transform(md_state.c, data + md_block_size * i - 13);
  360. }
  361. }
  362. OPENSSL_memset(mac_out, 0, sizeof(mac_out));
  363. /* We now process the final hash blocks. For each block, we construct
  364. * it in constant time. If the |i==index_a| then we'll include the 0x80
  365. * bytes and zero pad etc. For each block we selectively copy it, in
  366. * constant time, to |mac_out|. */
  367. for (i = num_starting_blocks; i <= num_starting_blocks + kVarianceBlocks;
  368. i++) {
  369. uint8_t block[MAX_HASH_BLOCK_SIZE];
  370. uint8_t is_block_a = constant_time_eq_8(i, index_a);
  371. uint8_t is_block_b = constant_time_eq_8(i, index_b);
  372. for (j = 0; j < md_block_size; j++) {
  373. uint8_t b = 0, is_past_c, is_past_cp1;
  374. if (k < kHeaderLength) {
  375. b = header[k];
  376. } else if (k < data_plus_mac_plus_padding_size + kHeaderLength) {
  377. b = data[k - kHeaderLength];
  378. }
  379. k++;
  380. is_past_c = is_block_a & constant_time_ge_8(j, c);
  381. is_past_cp1 = is_block_a & constant_time_ge_8(j, c + 1);
  382. /* If this is the block containing the end of the
  383. * application data, and we are at the offset for the
  384. * 0x80 value, then overwrite b with 0x80. */
  385. b = constant_time_select_8(is_past_c, 0x80, b);
  386. /* If this the the block containing the end of the
  387. * application data and we're past the 0x80 value then
  388. * just write zero. */
  389. b = b & ~is_past_cp1;
  390. /* If this is index_b (the final block), but not
  391. * index_a (the end of the data), then the 64-bit
  392. * length didn't fit into index_a and we're having to
  393. * add an extra block of zeros. */
  394. b &= ~is_block_b | is_block_a;
  395. /* The final bytes of one of the blocks contains the
  396. * length. */
  397. if (j >= md_block_size - md_length_size) {
  398. /* If this is index_b, write a length byte. */
  399. b = constant_time_select_8(
  400. is_block_b, length_bytes[j - (md_block_size - md_length_size)], b);
  401. }
  402. block[j] = b;
  403. }
  404. md_transform(md_state.c, block);
  405. md_final_raw(md_state.c, block);
  406. /* If this is index_b, copy the hash value to |mac_out|. */
  407. for (j = 0; j < md_size; j++) {
  408. mac_out[j] |= block[j] & is_block_b;
  409. }
  410. }
  411. EVP_MD_CTX_init(&md_ctx);
  412. if (!EVP_DigestInit_ex(&md_ctx, md, NULL /* engine */)) {
  413. EVP_MD_CTX_cleanup(&md_ctx);
  414. return 0;
  415. }
  416. /* Complete the HMAC in the standard manner. */
  417. for (i = 0; i < md_block_size; i++) {
  418. hmac_pad[i] ^= 0x6a;
  419. }
  420. EVP_DigestUpdate(&md_ctx, hmac_pad, md_block_size);
  421. EVP_DigestUpdate(&md_ctx, mac_out, md_size);
  422. EVP_DigestFinal(&md_ctx, md_out, &md_out_size_u);
  423. *md_out_size = md_out_size_u;
  424. EVP_MD_CTX_cleanup(&md_ctx);
  425. return 1;
  426. }