| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447 |
- /*
- * Copyright 2014-2016 The OpenSSL Project Authors. All Rights Reserved.
- * Copyright (c) 2014, Intel Corporation. All Rights Reserved.
- *
- * Licensed under the OpenSSL license (the "License"). You may not use
- * this file except in compliance with the License. You can obtain a copy
- * in the file LICENSE in the source distribution or at
- * https://www.openssl.org/source/license.html
- *
- * Originally written by Shay Gueron (1, 2), and Vlad Krasnov (1)
- * (1) Intel Corporation, Israel Development Center, Haifa, Israel
- * (2) University of Haifa, Israel
- *
- * Reference:
- * S.Gueron and V.Krasnov, "Fast Prime Field Elliptic Curve Cryptography with
- * 256 Bit Primes"
- */
- #include <openssl/ec.h>
- #include <assert.h>
- #include <stdint.h>
- #include <string.h>
- #include <openssl/bn.h>
- #include <openssl/crypto.h>
- #include <openssl/err.h>
- #include "../bn/internal.h"
- #include "../delocate.h"
- #include "../../internal.h"
- #include "internal.h"
- #include "p256-x86_64.h"
- #if !defined(OPENSSL_NO_ASM) && defined(OPENSSL_X86_64) && \
- !defined(OPENSSL_SMALL)
- typedef P256_POINT_AFFINE PRECOMP256_ROW[64];
- // One converted into the Montgomery domain
- static const BN_ULONG ONE[P256_LIMBS] = {
- TOBN(0x00000000, 0x00000001), TOBN(0xffffffff, 0x00000000),
- TOBN(0xffffffff, 0xffffffff), TOBN(0x00000000, 0xfffffffe),
- };
- // Precomputed tables for the default generator
- #include "p256-x86_64-table.h"
- // Recode window to a signed digit, see util-64.c for details
- static unsigned booth_recode_w5(unsigned in) {
- unsigned s, d;
- s = ~((in >> 5) - 1);
- d = (1 << 6) - in - 1;
- d = (d & s) | (in & ~s);
- d = (d >> 1) + (d & 1);
- return (d << 1) + (s & 1);
- }
- static unsigned booth_recode_w7(unsigned in) {
- unsigned s, d;
- s = ~((in >> 7) - 1);
- d = (1 << 8) - in - 1;
- d = (d & s) | (in & ~s);
- d = (d >> 1) + (d & 1);
- return (d << 1) + (s & 1);
- }
- // copy_conditional copies |src| to |dst| if |move| is one and leaves it as-is
- // if |move| is zero.
- //
- // WARNING: this breaks the usual convention of constant-time functions
- // returning masks.
- static void copy_conditional(BN_ULONG dst[P256_LIMBS],
- const BN_ULONG src[P256_LIMBS], BN_ULONG move) {
- BN_ULONG mask1 = ((BN_ULONG)0) - move;
- BN_ULONG mask2 = ~mask1;
- dst[0] = (src[0] & mask1) ^ (dst[0] & mask2);
- dst[1] = (src[1] & mask1) ^ (dst[1] & mask2);
- dst[2] = (src[2] & mask1) ^ (dst[2] & mask2);
- dst[3] = (src[3] & mask1) ^ (dst[3] & mask2);
- if (P256_LIMBS == 8) {
- dst[4] = (src[4] & mask1) ^ (dst[4] & mask2);
- dst[5] = (src[5] & mask1) ^ (dst[5] & mask2);
- dst[6] = (src[6] & mask1) ^ (dst[6] & mask2);
- dst[7] = (src[7] & mask1) ^ (dst[7] & mask2);
- }
- }
- // is_not_zero returns one iff in != 0 and zero otherwise.
- //
- // WARNING: this breaks the usual convention of constant-time functions
- // returning masks.
- //
- // (define-fun is_not_zero ((in (_ BitVec 64))) (_ BitVec 64)
- // (bvlshr (bvor in (bvsub #x0000000000000000 in)) #x000000000000003f)
- // )
- //
- // (declare-fun x () (_ BitVec 64))
- //
- // (assert (and (= x #x0000000000000000) (= (is_not_zero x) #x0000000000000001)))
- // (check-sat)
- //
- // (assert (and (not (= x #x0000000000000000)) (= (is_not_zero x) #x0000000000000000)))
- // (check-sat)
- //
- static BN_ULONG is_not_zero(BN_ULONG in) {
- in |= (0 - in);
- in >>= BN_BITS2 - 1;
- return in;
- }
- // ecp_nistz256_mod_inverse_mont sets |r| to (|in| * 2^-256)^-1 * 2^256 mod p.
- // That is, |r| is the modular inverse of |in| for input and output in the
- // Montgomery domain.
- static void ecp_nistz256_mod_inverse_mont(BN_ULONG r[P256_LIMBS],
- const BN_ULONG in[P256_LIMBS]) {
- /* The poly is ffffffff 00000001 00000000 00000000 00000000 ffffffff ffffffff
- ffffffff
- We use FLT and used poly-2 as exponent */
- BN_ULONG p2[P256_LIMBS];
- BN_ULONG p4[P256_LIMBS];
- BN_ULONG p8[P256_LIMBS];
- BN_ULONG p16[P256_LIMBS];
- BN_ULONG p32[P256_LIMBS];
- BN_ULONG res[P256_LIMBS];
- int i;
- ecp_nistz256_sqr_mont(res, in);
- ecp_nistz256_mul_mont(p2, res, in); // 3*p
- ecp_nistz256_sqr_mont(res, p2);
- ecp_nistz256_sqr_mont(res, res);
- ecp_nistz256_mul_mont(p4, res, p2); // f*p
- ecp_nistz256_sqr_mont(res, p4);
- ecp_nistz256_sqr_mont(res, res);
- ecp_nistz256_sqr_mont(res, res);
- ecp_nistz256_sqr_mont(res, res);
- ecp_nistz256_mul_mont(p8, res, p4); // ff*p
- ecp_nistz256_sqr_mont(res, p8);
- for (i = 0; i < 7; i++) {
- ecp_nistz256_sqr_mont(res, res);
- }
- ecp_nistz256_mul_mont(p16, res, p8); // ffff*p
- ecp_nistz256_sqr_mont(res, p16);
- for (i = 0; i < 15; i++) {
- ecp_nistz256_sqr_mont(res, res);
- }
- ecp_nistz256_mul_mont(p32, res, p16); // ffffffff*p
- ecp_nistz256_sqr_mont(res, p32);
- for (i = 0; i < 31; i++) {
- ecp_nistz256_sqr_mont(res, res);
- }
- ecp_nistz256_mul_mont(res, res, in);
- for (i = 0; i < 32 * 4; i++) {
- ecp_nistz256_sqr_mont(res, res);
- }
- ecp_nistz256_mul_mont(res, res, p32);
- for (i = 0; i < 32; i++) {
- ecp_nistz256_sqr_mont(res, res);
- }
- ecp_nistz256_mul_mont(res, res, p32);
- for (i = 0; i < 16; i++) {
- ecp_nistz256_sqr_mont(res, res);
- }
- ecp_nistz256_mul_mont(res, res, p16);
- for (i = 0; i < 8; i++) {
- ecp_nistz256_sqr_mont(res, res);
- }
- ecp_nistz256_mul_mont(res, res, p8);
- ecp_nistz256_sqr_mont(res, res);
- ecp_nistz256_sqr_mont(res, res);
- ecp_nistz256_sqr_mont(res, res);
- ecp_nistz256_sqr_mont(res, res);
- ecp_nistz256_mul_mont(res, res, p4);
- ecp_nistz256_sqr_mont(res, res);
- ecp_nistz256_sqr_mont(res, res);
- ecp_nistz256_mul_mont(res, res, p2);
- ecp_nistz256_sqr_mont(res, res);
- ecp_nistz256_sqr_mont(res, res);
- ecp_nistz256_mul_mont(r, res, in);
- }
- // ecp_nistz256_bignum_to_field_elem copies the contents of |in| to |out| and
- // returns one if it fits. Otherwise it returns zero.
- static int ecp_nistz256_bignum_to_field_elem(BN_ULONG out[P256_LIMBS],
- const BIGNUM *in) {
- return bn_copy_words(out, P256_LIMBS, in);
- }
- // r = p * p_scalar
- static int ecp_nistz256_windowed_mul(const EC_GROUP *group, P256_POINT *r,
- const EC_POINT *p,
- const EC_SCALAR *p_scalar) {
- assert(p != NULL);
- assert(p_scalar != NULL);
- static const unsigned kWindowSize = 5;
- static const unsigned kMask = (1 << (5 /* kWindowSize */ + 1)) - 1;
- // A |P256_POINT| is (3 * 32) = 96 bytes, and the 64-byte alignment should
- // add no more than 63 bytes of overhead. Thus, |table| should require
- // ~1599 ((96 * 16) + 63) bytes of stack space.
- alignas(64) P256_POINT table[16];
- uint8_t p_str[33];
- OPENSSL_memcpy(p_str, p_scalar->bytes, 32);
- p_str[32] = 0;
- // table[0] is implicitly (0,0,0) (the point at infinity), therefore it is
- // not stored. All other values are actually stored with an offset of -1 in
- // table.
- P256_POINT *row = table;
- if (!ecp_nistz256_bignum_to_field_elem(row[1 - 1].X, &p->X) ||
- !ecp_nistz256_bignum_to_field_elem(row[1 - 1].Y, &p->Y) ||
- !ecp_nistz256_bignum_to_field_elem(row[1 - 1].Z, &p->Z)) {
- OPENSSL_PUT_ERROR(EC, EC_R_COORDINATES_OUT_OF_RANGE);
- return 0;
- }
- ecp_nistz256_point_double(&row[2 - 1], &row[1 - 1]);
- ecp_nistz256_point_add(&row[3 - 1], &row[2 - 1], &row[1 - 1]);
- ecp_nistz256_point_double(&row[4 - 1], &row[2 - 1]);
- ecp_nistz256_point_double(&row[6 - 1], &row[3 - 1]);
- ecp_nistz256_point_double(&row[8 - 1], &row[4 - 1]);
- ecp_nistz256_point_double(&row[12 - 1], &row[6 - 1]);
- ecp_nistz256_point_add(&row[5 - 1], &row[4 - 1], &row[1 - 1]);
- ecp_nistz256_point_add(&row[7 - 1], &row[6 - 1], &row[1 - 1]);
- ecp_nistz256_point_add(&row[9 - 1], &row[8 - 1], &row[1 - 1]);
- ecp_nistz256_point_add(&row[13 - 1], &row[12 - 1], &row[1 - 1]);
- ecp_nistz256_point_double(&row[14 - 1], &row[7 - 1]);
- ecp_nistz256_point_double(&row[10 - 1], &row[5 - 1]);
- ecp_nistz256_point_add(&row[15 - 1], &row[14 - 1], &row[1 - 1]);
- ecp_nistz256_point_add(&row[11 - 1], &row[10 - 1], &row[1 - 1]);
- ecp_nistz256_point_double(&row[16 - 1], &row[8 - 1]);
- BN_ULONG tmp[P256_LIMBS];
- alignas(32) P256_POINT h;
- unsigned index = 255;
- unsigned wvalue = p_str[(index - 1) / 8];
- wvalue = (wvalue >> ((index - 1) % 8)) & kMask;
- ecp_nistz256_select_w5(r, table, booth_recode_w5(wvalue) >> 1);
- while (index >= 5) {
- if (index != 255) {
- unsigned off = (index - 1) / 8;
- wvalue = p_str[off] | p_str[off + 1] << 8;
- wvalue = (wvalue >> ((index - 1) % 8)) & kMask;
- wvalue = booth_recode_w5(wvalue);
- ecp_nistz256_select_w5(&h, table, wvalue >> 1);
- ecp_nistz256_neg(tmp, h.Y);
- copy_conditional(h.Y, tmp, (wvalue & 1));
- ecp_nistz256_point_add(r, r, &h);
- }
- index -= kWindowSize;
- ecp_nistz256_point_double(r, r);
- ecp_nistz256_point_double(r, r);
- ecp_nistz256_point_double(r, r);
- ecp_nistz256_point_double(r, r);
- ecp_nistz256_point_double(r, r);
- }
- // Final window
- wvalue = p_str[0];
- wvalue = (wvalue << 1) & kMask;
- wvalue = booth_recode_w5(wvalue);
- ecp_nistz256_select_w5(&h, table, wvalue >> 1);
- ecp_nistz256_neg(tmp, h.Y);
- copy_conditional(h.Y, tmp, wvalue & 1);
- ecp_nistz256_point_add(r, r, &h);
- return 1;
- }
- static int ecp_nistz256_points_mul(const EC_GROUP *group, EC_POINT *r,
- const EC_SCALAR *g_scalar,
- const EC_POINT *p_,
- const EC_SCALAR *p_scalar, BN_CTX *ctx) {
- assert((p_ != NULL) == (p_scalar != NULL));
- static const unsigned kWindowSize = 7;
- static const unsigned kMask = (1 << (7 /* kWindowSize */ + 1)) - 1;
- alignas(32) union {
- P256_POINT p;
- P256_POINT_AFFINE a;
- } t, p;
- if (g_scalar != NULL) {
- uint8_t p_str[33];
- OPENSSL_memcpy(p_str, g_scalar->bytes, 32);
- p_str[32] = 0;
- // First window
- unsigned wvalue = (p_str[0] << 1) & kMask;
- unsigned index = kWindowSize;
- wvalue = booth_recode_w7(wvalue);
- const PRECOMP256_ROW *const precomputed_table =
- (const PRECOMP256_ROW *)ecp_nistz256_precomputed;
- ecp_nistz256_select_w7(&p.a, precomputed_table[0], wvalue >> 1);
- ecp_nistz256_neg(p.p.Z, p.p.Y);
- copy_conditional(p.p.Y, p.p.Z, wvalue & 1);
- // Convert |p| from affine to Jacobian coordinates. We set Z to zero if |p|
- // is infinity and |ONE| otherwise. |p| was computed from the table, so it
- // is infinity iff |wvalue >> 1| is zero.
- OPENSSL_memset(p.p.Z, 0, sizeof(p.p.Z));
- copy_conditional(p.p.Z, ONE, is_not_zero(wvalue >> 1));
- for (int i = 1; i < 37; i++) {
- unsigned off = (index - 1) / 8;
- wvalue = p_str[off] | p_str[off + 1] << 8;
- wvalue = (wvalue >> ((index - 1) % 8)) & kMask;
- index += kWindowSize;
- wvalue = booth_recode_w7(wvalue);
- ecp_nistz256_select_w7(&t.a, precomputed_table[i], wvalue >> 1);
- ecp_nistz256_neg(t.p.Z, t.a.Y);
- copy_conditional(t.a.Y, t.p.Z, wvalue & 1);
- ecp_nistz256_point_add_affine(&p.p, &p.p, &t.a);
- }
- }
- const int p_is_infinity = g_scalar == NULL;
- if (p_scalar != NULL) {
- P256_POINT *out = &t.p;
- if (p_is_infinity) {
- out = &p.p;
- }
- if (!ecp_nistz256_windowed_mul(group, out, p_, p_scalar)) {
- return 0;
- }
- if (!p_is_infinity) {
- ecp_nistz256_point_add(&p.p, &p.p, out);
- }
- }
- // Not constant-time, but we're only operating on the public output.
- if (!bn_set_words(&r->X, p.p.X, P256_LIMBS) ||
- !bn_set_words(&r->Y, p.p.Y, P256_LIMBS) ||
- !bn_set_words(&r->Z, p.p.Z, P256_LIMBS)) {
- return 0;
- }
- return 1;
- }
- static int ecp_nistz256_get_affine(const EC_GROUP *group, const EC_POINT *point,
- BIGNUM *x, BIGNUM *y, BN_CTX *ctx) {
- BN_ULONG z_inv2[P256_LIMBS];
- BN_ULONG z_inv3[P256_LIMBS];
- BN_ULONG point_x[P256_LIMBS], point_y[P256_LIMBS], point_z[P256_LIMBS];
- if (EC_POINT_is_at_infinity(group, point)) {
- OPENSSL_PUT_ERROR(EC, EC_R_POINT_AT_INFINITY);
- return 0;
- }
- if (!ecp_nistz256_bignum_to_field_elem(point_x, &point->X) ||
- !ecp_nistz256_bignum_to_field_elem(point_y, &point->Y) ||
- !ecp_nistz256_bignum_to_field_elem(point_z, &point->Z)) {
- OPENSSL_PUT_ERROR(EC, EC_R_COORDINATES_OUT_OF_RANGE);
- return 0;
- }
- ecp_nistz256_mod_inverse_mont(z_inv3, point_z);
- ecp_nistz256_sqr_mont(z_inv2, z_inv3);
- // Instead of using |ecp_nistz256_from_mont| to convert the |x| coordinate
- // and then calling |ecp_nistz256_from_mont| again to convert the |y|
- // coordinate below, convert the common factor |z_inv2| once now, saving one
- // reduction.
- ecp_nistz256_from_mont(z_inv2, z_inv2);
- if (x != NULL) {
- BN_ULONG x_aff[P256_LIMBS];
- ecp_nistz256_mul_mont(x_aff, z_inv2, point_x);
- if (!bn_set_words(x, x_aff, P256_LIMBS)) {
- OPENSSL_PUT_ERROR(EC, ERR_R_MALLOC_FAILURE);
- return 0;
- }
- }
- if (y != NULL) {
- BN_ULONG y_aff[P256_LIMBS];
- ecp_nistz256_mul_mont(z_inv3, z_inv3, z_inv2);
- ecp_nistz256_mul_mont(y_aff, z_inv3, point_y);
- if (!bn_set_words(y, y_aff, P256_LIMBS)) {
- OPENSSL_PUT_ERROR(EC, ERR_R_MALLOC_FAILURE);
- return 0;
- }
- }
- return 1;
- }
- DEFINE_METHOD_FUNCTION(EC_METHOD, EC_GFp_nistz256_method) {
- out->group_init = ec_GFp_mont_group_init;
- out->group_finish = ec_GFp_mont_group_finish;
- out->group_set_curve = ec_GFp_mont_group_set_curve;
- out->point_get_affine_coordinates = ecp_nistz256_get_affine;
- out->mul = ecp_nistz256_points_mul;
- out->mul_public = ecp_nistz256_points_mul;
- out->field_mul = ec_GFp_mont_field_mul;
- out->field_sqr = ec_GFp_mont_field_sqr;
- out->field_encode = ec_GFp_mont_field_encode;
- out->field_decode = ec_GFp_mont_field_decode;
- };
- #endif /* !defined(OPENSSL_NO_ASM) && defined(OPENSSL_X86_64) && \
- !defined(OPENSSL_SMALL) */
|