prime.c 43 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154
  1. /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
  2. * All rights reserved.
  3. *
  4. * This package is an SSL implementation written
  5. * by Eric Young (eay@cryptsoft.com).
  6. * The implementation was written so as to conform with Netscapes SSL.
  7. *
  8. * This library is free for commercial and non-commercial use as long as
  9. * the following conditions are aheared to. The following conditions
  10. * apply to all code found in this distribution, be it the RC4, RSA,
  11. * lhash, DES, etc., code; not just the SSL code. The SSL documentation
  12. * included with this distribution is covered by the same copyright terms
  13. * except that the holder is Tim Hudson (tjh@cryptsoft.com).
  14. *
  15. * Copyright remains Eric Young's, and as such any Copyright notices in
  16. * the code are not to be removed.
  17. * If this package is used in a product, Eric Young should be given attribution
  18. * as the author of the parts of the library used.
  19. * This can be in the form of a textual message at program startup or
  20. * in documentation (online or textual) provided with the package.
  21. *
  22. * Redistribution and use in source and binary forms, with or without
  23. * modification, are permitted provided that the following conditions
  24. * are met:
  25. * 1. Redistributions of source code must retain the copyright
  26. * notice, this list of conditions and the following disclaimer.
  27. * 2. Redistributions in binary form must reproduce the above copyright
  28. * notice, this list of conditions and the following disclaimer in the
  29. * documentation and/or other materials provided with the distribution.
  30. * 3. All advertising materials mentioning features or use of this software
  31. * must display the following acknowledgement:
  32. * "This product includes cryptographic software written by
  33. * Eric Young (eay@cryptsoft.com)"
  34. * The word 'cryptographic' can be left out if the rouines from the library
  35. * being used are not cryptographic related :-).
  36. * 4. If you include any Windows specific code (or a derivative thereof) from
  37. * the apps directory (application code) you must include an acknowledgement:
  38. * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
  39. *
  40. * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
  41. * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  42. * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  43. * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
  44. * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  45. * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
  46. * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
  47. * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
  48. * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
  49. * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
  50. * SUCH DAMAGE.
  51. *
  52. * The licence and distribution terms for any publically available version or
  53. * derivative of this code cannot be changed. i.e. this code cannot simply be
  54. * copied and put under another distribution licence
  55. * [including the GNU Public Licence.]
  56. */
  57. /* ====================================================================
  58. * Copyright (c) 1998-2001 The OpenSSL Project. All rights reserved.
  59. *
  60. * Redistribution and use in source and binary forms, with or without
  61. * modification, are permitted provided that the following conditions
  62. * are met:
  63. *
  64. * 1. Redistributions of source code must retain the above copyright
  65. * notice, this list of conditions and the following disclaimer.
  66. *
  67. * 2. Redistributions in binary form must reproduce the above copyright
  68. * notice, this list of conditions and the following disclaimer in
  69. * the documentation and/or other materials provided with the
  70. * distribution.
  71. *
  72. * 3. All advertising materials mentioning features or use of this
  73. * software must display the following acknowledgment:
  74. * "This product includes software developed by the OpenSSL Project
  75. * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
  76. *
  77. * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
  78. * endorse or promote products derived from this software without
  79. * prior written permission. For written permission, please contact
  80. * openssl-core@openssl.org.
  81. *
  82. * 5. Products derived from this software may not be called "OpenSSL"
  83. * nor may "OpenSSL" appear in their names without prior written
  84. * permission of the OpenSSL Project.
  85. *
  86. * 6. Redistributions of any form whatsoever must retain the following
  87. * acknowledgment:
  88. * "This product includes software developed by the OpenSSL Project
  89. * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
  90. *
  91. * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
  92. * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  93. * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
  94. * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
  95. * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  96. * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
  97. * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
  98. * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
  99. * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
  100. * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
  101. * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
  102. * OF THE POSSIBILITY OF SUCH DAMAGE.
  103. * ====================================================================
  104. *
  105. * This product includes cryptographic software written by Eric Young
  106. * (eay@cryptsoft.com). This product includes software written by Tim
  107. * Hudson (tjh@cryptsoft.com). */
  108. #include <openssl/bn.h>
  109. #include <openssl/err.h>
  110. #include <openssl/mem.h>
  111. #include "internal.h"
  112. #include "../../internal.h"
  113. // The quick sieve algorithm approach to weeding out primes is Philip
  114. // Zimmermann's, as implemented in PGP. I have had a read of his comments and
  115. // implemented my own version.
  116. #define NUMPRIMES 2048
  117. // primes contains all the primes that fit into a uint16_t.
  118. static const uint16_t primes[NUMPRIMES] = {
  119. 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31,
  120. 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79,
  121. 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137,
  122. 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193,
  123. 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257,
  124. 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317,
  125. 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389,
  126. 397, 401, 409, 419, 421, 431, 433, 439, 443, 449, 457,
  127. 461, 463, 467, 479, 487, 491, 499, 503, 509, 521, 523,
  128. 541, 547, 557, 563, 569, 571, 577, 587, 593, 599, 601,
  129. 607, 613, 617, 619, 631, 641, 643, 647, 653, 659, 661,
  130. 673, 677, 683, 691, 701, 709, 719, 727, 733, 739, 743,
  131. 751, 757, 761, 769, 773, 787, 797, 809, 811, 821, 823,
  132. 827, 829, 839, 853, 857, 859, 863, 877, 881, 883, 887,
  133. 907, 911, 919, 929, 937, 941, 947, 953, 967, 971, 977,
  134. 983, 991, 997, 1009, 1013, 1019, 1021, 1031, 1033, 1039, 1049,
  135. 1051, 1061, 1063, 1069, 1087, 1091, 1093, 1097, 1103, 1109, 1117,
  136. 1123, 1129, 1151, 1153, 1163, 1171, 1181, 1187, 1193, 1201, 1213,
  137. 1217, 1223, 1229, 1231, 1237, 1249, 1259, 1277, 1279, 1283, 1289,
  138. 1291, 1297, 1301, 1303, 1307, 1319, 1321, 1327, 1361, 1367, 1373,
  139. 1381, 1399, 1409, 1423, 1427, 1429, 1433, 1439, 1447, 1451, 1453,
  140. 1459, 1471, 1481, 1483, 1487, 1489, 1493, 1499, 1511, 1523, 1531,
  141. 1543, 1549, 1553, 1559, 1567, 1571, 1579, 1583, 1597, 1601, 1607,
  142. 1609, 1613, 1619, 1621, 1627, 1637, 1657, 1663, 1667, 1669, 1693,
  143. 1697, 1699, 1709, 1721, 1723, 1733, 1741, 1747, 1753, 1759, 1777,
  144. 1783, 1787, 1789, 1801, 1811, 1823, 1831, 1847, 1861, 1867, 1871,
  145. 1873, 1877, 1879, 1889, 1901, 1907, 1913, 1931, 1933, 1949, 1951,
  146. 1973, 1979, 1987, 1993, 1997, 1999, 2003, 2011, 2017, 2027, 2029,
  147. 2039, 2053, 2063, 2069, 2081, 2083, 2087, 2089, 2099, 2111, 2113,
  148. 2129, 2131, 2137, 2141, 2143, 2153, 2161, 2179, 2203, 2207, 2213,
  149. 2221, 2237, 2239, 2243, 2251, 2267, 2269, 2273, 2281, 2287, 2293,
  150. 2297, 2309, 2311, 2333, 2339, 2341, 2347, 2351, 2357, 2371, 2377,
  151. 2381, 2383, 2389, 2393, 2399, 2411, 2417, 2423, 2437, 2441, 2447,
  152. 2459, 2467, 2473, 2477, 2503, 2521, 2531, 2539, 2543, 2549, 2551,
  153. 2557, 2579, 2591, 2593, 2609, 2617, 2621, 2633, 2647, 2657, 2659,
  154. 2663, 2671, 2677, 2683, 2687, 2689, 2693, 2699, 2707, 2711, 2713,
  155. 2719, 2729, 2731, 2741, 2749, 2753, 2767, 2777, 2789, 2791, 2797,
  156. 2801, 2803, 2819, 2833, 2837, 2843, 2851, 2857, 2861, 2879, 2887,
  157. 2897, 2903, 2909, 2917, 2927, 2939, 2953, 2957, 2963, 2969, 2971,
  158. 2999, 3001, 3011, 3019, 3023, 3037, 3041, 3049, 3061, 3067, 3079,
  159. 3083, 3089, 3109, 3119, 3121, 3137, 3163, 3167, 3169, 3181, 3187,
  160. 3191, 3203, 3209, 3217, 3221, 3229, 3251, 3253, 3257, 3259, 3271,
  161. 3299, 3301, 3307, 3313, 3319, 3323, 3329, 3331, 3343, 3347, 3359,
  162. 3361, 3371, 3373, 3389, 3391, 3407, 3413, 3433, 3449, 3457, 3461,
  163. 3463, 3467, 3469, 3491, 3499, 3511, 3517, 3527, 3529, 3533, 3539,
  164. 3541, 3547, 3557, 3559, 3571, 3581, 3583, 3593, 3607, 3613, 3617,
  165. 3623, 3631, 3637, 3643, 3659, 3671, 3673, 3677, 3691, 3697, 3701,
  166. 3709, 3719, 3727, 3733, 3739, 3761, 3767, 3769, 3779, 3793, 3797,
  167. 3803, 3821, 3823, 3833, 3847, 3851, 3853, 3863, 3877, 3881, 3889,
  168. 3907, 3911, 3917, 3919, 3923, 3929, 3931, 3943, 3947, 3967, 3989,
  169. 4001, 4003, 4007, 4013, 4019, 4021, 4027, 4049, 4051, 4057, 4073,
  170. 4079, 4091, 4093, 4099, 4111, 4127, 4129, 4133, 4139, 4153, 4157,
  171. 4159, 4177, 4201, 4211, 4217, 4219, 4229, 4231, 4241, 4243, 4253,
  172. 4259, 4261, 4271, 4273, 4283, 4289, 4297, 4327, 4337, 4339, 4349,
  173. 4357, 4363, 4373, 4391, 4397, 4409, 4421, 4423, 4441, 4447, 4451,
  174. 4457, 4463, 4481, 4483, 4493, 4507, 4513, 4517, 4519, 4523, 4547,
  175. 4549, 4561, 4567, 4583, 4591, 4597, 4603, 4621, 4637, 4639, 4643,
  176. 4649, 4651, 4657, 4663, 4673, 4679, 4691, 4703, 4721, 4723, 4729,
  177. 4733, 4751, 4759, 4783, 4787, 4789, 4793, 4799, 4801, 4813, 4817,
  178. 4831, 4861, 4871, 4877, 4889, 4903, 4909, 4919, 4931, 4933, 4937,
  179. 4943, 4951, 4957, 4967, 4969, 4973, 4987, 4993, 4999, 5003, 5009,
  180. 5011, 5021, 5023, 5039, 5051, 5059, 5077, 5081, 5087, 5099, 5101,
  181. 5107, 5113, 5119, 5147, 5153, 5167, 5171, 5179, 5189, 5197, 5209,
  182. 5227, 5231, 5233, 5237, 5261, 5273, 5279, 5281, 5297, 5303, 5309,
  183. 5323, 5333, 5347, 5351, 5381, 5387, 5393, 5399, 5407, 5413, 5417,
  184. 5419, 5431, 5437, 5441, 5443, 5449, 5471, 5477, 5479, 5483, 5501,
  185. 5503, 5507, 5519, 5521, 5527, 5531, 5557, 5563, 5569, 5573, 5581,
  186. 5591, 5623, 5639, 5641, 5647, 5651, 5653, 5657, 5659, 5669, 5683,
  187. 5689, 5693, 5701, 5711, 5717, 5737, 5741, 5743, 5749, 5779, 5783,
  188. 5791, 5801, 5807, 5813, 5821, 5827, 5839, 5843, 5849, 5851, 5857,
  189. 5861, 5867, 5869, 5879, 5881, 5897, 5903, 5923, 5927, 5939, 5953,
  190. 5981, 5987, 6007, 6011, 6029, 6037, 6043, 6047, 6053, 6067, 6073,
  191. 6079, 6089, 6091, 6101, 6113, 6121, 6131, 6133, 6143, 6151, 6163,
  192. 6173, 6197, 6199, 6203, 6211, 6217, 6221, 6229, 6247, 6257, 6263,
  193. 6269, 6271, 6277, 6287, 6299, 6301, 6311, 6317, 6323, 6329, 6337,
  194. 6343, 6353, 6359, 6361, 6367, 6373, 6379, 6389, 6397, 6421, 6427,
  195. 6449, 6451, 6469, 6473, 6481, 6491, 6521, 6529, 6547, 6551, 6553,
  196. 6563, 6569, 6571, 6577, 6581, 6599, 6607, 6619, 6637, 6653, 6659,
  197. 6661, 6673, 6679, 6689, 6691, 6701, 6703, 6709, 6719, 6733, 6737,
  198. 6761, 6763, 6779, 6781, 6791, 6793, 6803, 6823, 6827, 6829, 6833,
  199. 6841, 6857, 6863, 6869, 6871, 6883, 6899, 6907, 6911, 6917, 6947,
  200. 6949, 6959, 6961, 6967, 6971, 6977, 6983, 6991, 6997, 7001, 7013,
  201. 7019, 7027, 7039, 7043, 7057, 7069, 7079, 7103, 7109, 7121, 7127,
  202. 7129, 7151, 7159, 7177, 7187, 7193, 7207, 7211, 7213, 7219, 7229,
  203. 7237, 7243, 7247, 7253, 7283, 7297, 7307, 7309, 7321, 7331, 7333,
  204. 7349, 7351, 7369, 7393, 7411, 7417, 7433, 7451, 7457, 7459, 7477,
  205. 7481, 7487, 7489, 7499, 7507, 7517, 7523, 7529, 7537, 7541, 7547,
  206. 7549, 7559, 7561, 7573, 7577, 7583, 7589, 7591, 7603, 7607, 7621,
  207. 7639, 7643, 7649, 7669, 7673, 7681, 7687, 7691, 7699, 7703, 7717,
  208. 7723, 7727, 7741, 7753, 7757, 7759, 7789, 7793, 7817, 7823, 7829,
  209. 7841, 7853, 7867, 7873, 7877, 7879, 7883, 7901, 7907, 7919, 7927,
  210. 7933, 7937, 7949, 7951, 7963, 7993, 8009, 8011, 8017, 8039, 8053,
  211. 8059, 8069, 8081, 8087, 8089, 8093, 8101, 8111, 8117, 8123, 8147,
  212. 8161, 8167, 8171, 8179, 8191, 8209, 8219, 8221, 8231, 8233, 8237,
  213. 8243, 8263, 8269, 8273, 8287, 8291, 8293, 8297, 8311, 8317, 8329,
  214. 8353, 8363, 8369, 8377, 8387, 8389, 8419, 8423, 8429, 8431, 8443,
  215. 8447, 8461, 8467, 8501, 8513, 8521, 8527, 8537, 8539, 8543, 8563,
  216. 8573, 8581, 8597, 8599, 8609, 8623, 8627, 8629, 8641, 8647, 8663,
  217. 8669, 8677, 8681, 8689, 8693, 8699, 8707, 8713, 8719, 8731, 8737,
  218. 8741, 8747, 8753, 8761, 8779, 8783, 8803, 8807, 8819, 8821, 8831,
  219. 8837, 8839, 8849, 8861, 8863, 8867, 8887, 8893, 8923, 8929, 8933,
  220. 8941, 8951, 8963, 8969, 8971, 8999, 9001, 9007, 9011, 9013, 9029,
  221. 9041, 9043, 9049, 9059, 9067, 9091, 9103, 9109, 9127, 9133, 9137,
  222. 9151, 9157, 9161, 9173, 9181, 9187, 9199, 9203, 9209, 9221, 9227,
  223. 9239, 9241, 9257, 9277, 9281, 9283, 9293, 9311, 9319, 9323, 9337,
  224. 9341, 9343, 9349, 9371, 9377, 9391, 9397, 9403, 9413, 9419, 9421,
  225. 9431, 9433, 9437, 9439, 9461, 9463, 9467, 9473, 9479, 9491, 9497,
  226. 9511, 9521, 9533, 9539, 9547, 9551, 9587, 9601, 9613, 9619, 9623,
  227. 9629, 9631, 9643, 9649, 9661, 9677, 9679, 9689, 9697, 9719, 9721,
  228. 9733, 9739, 9743, 9749, 9767, 9769, 9781, 9787, 9791, 9803, 9811,
  229. 9817, 9829, 9833, 9839, 9851, 9857, 9859, 9871, 9883, 9887, 9901,
  230. 9907, 9923, 9929, 9931, 9941, 9949, 9967, 9973, 10007, 10009, 10037,
  231. 10039, 10061, 10067, 10069, 10079, 10091, 10093, 10099, 10103, 10111, 10133,
  232. 10139, 10141, 10151, 10159, 10163, 10169, 10177, 10181, 10193, 10211, 10223,
  233. 10243, 10247, 10253, 10259, 10267, 10271, 10273, 10289, 10301, 10303, 10313,
  234. 10321, 10331, 10333, 10337, 10343, 10357, 10369, 10391, 10399, 10427, 10429,
  235. 10433, 10453, 10457, 10459, 10463, 10477, 10487, 10499, 10501, 10513, 10529,
  236. 10531, 10559, 10567, 10589, 10597, 10601, 10607, 10613, 10627, 10631, 10639,
  237. 10651, 10657, 10663, 10667, 10687, 10691, 10709, 10711, 10723, 10729, 10733,
  238. 10739, 10753, 10771, 10781, 10789, 10799, 10831, 10837, 10847, 10853, 10859,
  239. 10861, 10867, 10883, 10889, 10891, 10903, 10909, 10937, 10939, 10949, 10957,
  240. 10973, 10979, 10987, 10993, 11003, 11027, 11047, 11057, 11059, 11069, 11071,
  241. 11083, 11087, 11093, 11113, 11117, 11119, 11131, 11149, 11159, 11161, 11171,
  242. 11173, 11177, 11197, 11213, 11239, 11243, 11251, 11257, 11261, 11273, 11279,
  243. 11287, 11299, 11311, 11317, 11321, 11329, 11351, 11353, 11369, 11383, 11393,
  244. 11399, 11411, 11423, 11437, 11443, 11447, 11467, 11471, 11483, 11489, 11491,
  245. 11497, 11503, 11519, 11527, 11549, 11551, 11579, 11587, 11593, 11597, 11617,
  246. 11621, 11633, 11657, 11677, 11681, 11689, 11699, 11701, 11717, 11719, 11731,
  247. 11743, 11777, 11779, 11783, 11789, 11801, 11807, 11813, 11821, 11827, 11831,
  248. 11833, 11839, 11863, 11867, 11887, 11897, 11903, 11909, 11923, 11927, 11933,
  249. 11939, 11941, 11953, 11959, 11969, 11971, 11981, 11987, 12007, 12011, 12037,
  250. 12041, 12043, 12049, 12071, 12073, 12097, 12101, 12107, 12109, 12113, 12119,
  251. 12143, 12149, 12157, 12161, 12163, 12197, 12203, 12211, 12227, 12239, 12241,
  252. 12251, 12253, 12263, 12269, 12277, 12281, 12289, 12301, 12323, 12329, 12343,
  253. 12347, 12373, 12377, 12379, 12391, 12401, 12409, 12413, 12421, 12433, 12437,
  254. 12451, 12457, 12473, 12479, 12487, 12491, 12497, 12503, 12511, 12517, 12527,
  255. 12539, 12541, 12547, 12553, 12569, 12577, 12583, 12589, 12601, 12611, 12613,
  256. 12619, 12637, 12641, 12647, 12653, 12659, 12671, 12689, 12697, 12703, 12713,
  257. 12721, 12739, 12743, 12757, 12763, 12781, 12791, 12799, 12809, 12821, 12823,
  258. 12829, 12841, 12853, 12889, 12893, 12899, 12907, 12911, 12917, 12919, 12923,
  259. 12941, 12953, 12959, 12967, 12973, 12979, 12983, 13001, 13003, 13007, 13009,
  260. 13033, 13037, 13043, 13049, 13063, 13093, 13099, 13103, 13109, 13121, 13127,
  261. 13147, 13151, 13159, 13163, 13171, 13177, 13183, 13187, 13217, 13219, 13229,
  262. 13241, 13249, 13259, 13267, 13291, 13297, 13309, 13313, 13327, 13331, 13337,
  263. 13339, 13367, 13381, 13397, 13399, 13411, 13417, 13421, 13441, 13451, 13457,
  264. 13463, 13469, 13477, 13487, 13499, 13513, 13523, 13537, 13553, 13567, 13577,
  265. 13591, 13597, 13613, 13619, 13627, 13633, 13649, 13669, 13679, 13681, 13687,
  266. 13691, 13693, 13697, 13709, 13711, 13721, 13723, 13729, 13751, 13757, 13759,
  267. 13763, 13781, 13789, 13799, 13807, 13829, 13831, 13841, 13859, 13873, 13877,
  268. 13879, 13883, 13901, 13903, 13907, 13913, 13921, 13931, 13933, 13963, 13967,
  269. 13997, 13999, 14009, 14011, 14029, 14033, 14051, 14057, 14071, 14081, 14083,
  270. 14087, 14107, 14143, 14149, 14153, 14159, 14173, 14177, 14197, 14207, 14221,
  271. 14243, 14249, 14251, 14281, 14293, 14303, 14321, 14323, 14327, 14341, 14347,
  272. 14369, 14387, 14389, 14401, 14407, 14411, 14419, 14423, 14431, 14437, 14447,
  273. 14449, 14461, 14479, 14489, 14503, 14519, 14533, 14537, 14543, 14549, 14551,
  274. 14557, 14561, 14563, 14591, 14593, 14621, 14627, 14629, 14633, 14639, 14653,
  275. 14657, 14669, 14683, 14699, 14713, 14717, 14723, 14731, 14737, 14741, 14747,
  276. 14753, 14759, 14767, 14771, 14779, 14783, 14797, 14813, 14821, 14827, 14831,
  277. 14843, 14851, 14867, 14869, 14879, 14887, 14891, 14897, 14923, 14929, 14939,
  278. 14947, 14951, 14957, 14969, 14983, 15013, 15017, 15031, 15053, 15061, 15073,
  279. 15077, 15083, 15091, 15101, 15107, 15121, 15131, 15137, 15139, 15149, 15161,
  280. 15173, 15187, 15193, 15199, 15217, 15227, 15233, 15241, 15259, 15263, 15269,
  281. 15271, 15277, 15287, 15289, 15299, 15307, 15313, 15319, 15329, 15331, 15349,
  282. 15359, 15361, 15373, 15377, 15383, 15391, 15401, 15413, 15427, 15439, 15443,
  283. 15451, 15461, 15467, 15473, 15493, 15497, 15511, 15527, 15541, 15551, 15559,
  284. 15569, 15581, 15583, 15601, 15607, 15619, 15629, 15641, 15643, 15647, 15649,
  285. 15661, 15667, 15671, 15679, 15683, 15727, 15731, 15733, 15737, 15739, 15749,
  286. 15761, 15767, 15773, 15787, 15791, 15797, 15803, 15809, 15817, 15823, 15859,
  287. 15877, 15881, 15887, 15889, 15901, 15907, 15913, 15919, 15923, 15937, 15959,
  288. 15971, 15973, 15991, 16001, 16007, 16033, 16057, 16061, 16063, 16067, 16069,
  289. 16073, 16087, 16091, 16097, 16103, 16111, 16127, 16139, 16141, 16183, 16187,
  290. 16189, 16193, 16217, 16223, 16229, 16231, 16249, 16253, 16267, 16273, 16301,
  291. 16319, 16333, 16339, 16349, 16361, 16363, 16369, 16381, 16411, 16417, 16421,
  292. 16427, 16433, 16447, 16451, 16453, 16477, 16481, 16487, 16493, 16519, 16529,
  293. 16547, 16553, 16561, 16567, 16573, 16603, 16607, 16619, 16631, 16633, 16649,
  294. 16651, 16657, 16661, 16673, 16691, 16693, 16699, 16703, 16729, 16741, 16747,
  295. 16759, 16763, 16787, 16811, 16823, 16829, 16831, 16843, 16871, 16879, 16883,
  296. 16889, 16901, 16903, 16921, 16927, 16931, 16937, 16943, 16963, 16979, 16981,
  297. 16987, 16993, 17011, 17021, 17027, 17029, 17033, 17041, 17047, 17053, 17077,
  298. 17093, 17099, 17107, 17117, 17123, 17137, 17159, 17167, 17183, 17189, 17191,
  299. 17203, 17207, 17209, 17231, 17239, 17257, 17291, 17293, 17299, 17317, 17321,
  300. 17327, 17333, 17341, 17351, 17359, 17377, 17383, 17387, 17389, 17393, 17401,
  301. 17417, 17419, 17431, 17443, 17449, 17467, 17471, 17477, 17483, 17489, 17491,
  302. 17497, 17509, 17519, 17539, 17551, 17569, 17573, 17579, 17581, 17597, 17599,
  303. 17609, 17623, 17627, 17657, 17659, 17669, 17681, 17683, 17707, 17713, 17729,
  304. 17737, 17747, 17749, 17761, 17783, 17789, 17791, 17807, 17827, 17837, 17839,
  305. 17851, 17863,
  306. };
  307. // BN_prime_checks_for_size returns the number of Miller-Rabin iterations
  308. // necessary for a 'bits'-bit prime, in order to maintain an error rate greater
  309. // than the security level for an RSA prime of that many bits (calculated using
  310. // the FIPS SP 800-57 security level and 186-4 Section F.1; original paper:
  311. // Damgaard, Landrock, Pomerance: Average case error estimates for the strong
  312. // probable prime test. -- Math. Comp. 61 (1993) 177-194)
  313. static int BN_prime_checks_for_size(int bits) {
  314. if (bits >= 3747) {
  315. return 3;
  316. }
  317. if (bits >= 1345) {
  318. return 4;
  319. }
  320. if (bits >= 476) {
  321. return 5;
  322. }
  323. if (bits >= 400) {
  324. return 6;
  325. }
  326. if (bits >= 308) {
  327. return 8;
  328. }
  329. if (bits >= 205) {
  330. return 13;
  331. }
  332. if (bits >= 155) {
  333. return 19;
  334. }
  335. return 28;
  336. }
  337. // BN_PRIME_CHECKS_BLINDED is the iteration count for blinding the constant-time
  338. // primality test. See |BN_primality_test| for details. This number is selected
  339. // so that, for a candidate N-bit RSA prime, picking |BN_PRIME_CHECKS_BLINDED|
  340. // random N-bit numbers will have at least |BN_prime_checks_for_size(N)| values
  341. // in range with high probability.
  342. //
  343. // The following Python script computes the blinding factor needed for the
  344. // corresponding iteration count.
  345. /*
  346. import math
  347. # We choose candidate RSA primes between sqrt(2)/2 * 2^N and 2^N and select
  348. # witnesses by generating random N-bit numbers. Thus the probability of
  349. # selecting one in range is at least sqrt(2)/2.
  350. p = math.sqrt(2) / 2
  351. # Target around 2^-8 probability of the blinding being insufficient given that
  352. # key generation is a one-time, noisy operation.
  353. epsilon = 2**-8
  354. def choose(a, b):
  355. r = 1
  356. for i in xrange(b):
  357. r *= a - i
  358. r /= (i + 1)
  359. return r
  360. def failure_rate(min_uniform, iterations):
  361. """ Returns the probability that, for |iterations| candidate witnesses, fewer
  362. than |min_uniform| of them will be uniform. """
  363. prob = 0.0
  364. for i in xrange(min_uniform):
  365. prob += (choose(iterations, i) *
  366. p**i * (1-p)**(iterations - i))
  367. return prob
  368. for min_uniform in (3, 4, 5, 6, 8, 13, 19, 28):
  369. # Find the smallest number of iterations under the target failure rate.
  370. iterations = min_uniform
  371. while True:
  372. prob = failure_rate(min_uniform, iterations)
  373. if prob < epsilon:
  374. print min_uniform, iterations, prob
  375. break
  376. iterations += 1
  377. Output:
  378. 3 9 0.00368894873911
  379. 4 11 0.00363319494662
  380. 5 13 0.00336215573898
  381. 6 15 0.00300145783158
  382. 8 19 0.00225214119331
  383. 13 27 0.00385610026955
  384. 19 38 0.0021410539126
  385. 28 52 0.00325405801769
  386. 16 iterations suffices for 400-bit primes and larger (6 uniform samples needed),
  387. which is already well below the minimum acceptable key size for RSA.
  388. */
  389. #define BN_PRIME_CHECKS_BLINDED 16
  390. static int probable_prime(BIGNUM *rnd, int bits);
  391. static int probable_prime_dh(BIGNUM *rnd, int bits, const BIGNUM *add,
  392. const BIGNUM *rem, BN_CTX *ctx);
  393. static int probable_prime_dh_safe(BIGNUM *rnd, int bits, const BIGNUM *add,
  394. const BIGNUM *rem, BN_CTX *ctx);
  395. void BN_GENCB_set(BN_GENCB *callback,
  396. int (*f)(int event, int n, struct bn_gencb_st *),
  397. void *arg) {
  398. callback->callback = f;
  399. callback->arg = arg;
  400. }
  401. int BN_GENCB_call(BN_GENCB *callback, int event, int n) {
  402. if (!callback) {
  403. return 1;
  404. }
  405. return callback->callback(event, n, callback);
  406. }
  407. int BN_generate_prime_ex(BIGNUM *ret, int bits, int safe, const BIGNUM *add,
  408. const BIGNUM *rem, BN_GENCB *cb) {
  409. BIGNUM *t;
  410. int found = 0;
  411. int i, j, c1 = 0;
  412. BN_CTX *ctx;
  413. int checks = BN_prime_checks_for_size(bits);
  414. if (bits < 2) {
  415. // There are no prime numbers this small.
  416. OPENSSL_PUT_ERROR(BN, BN_R_BITS_TOO_SMALL);
  417. return 0;
  418. } else if (bits == 2 && safe) {
  419. // The smallest safe prime (7) is three bits.
  420. OPENSSL_PUT_ERROR(BN, BN_R_BITS_TOO_SMALL);
  421. return 0;
  422. }
  423. ctx = BN_CTX_new();
  424. if (ctx == NULL) {
  425. goto err;
  426. }
  427. BN_CTX_start(ctx);
  428. t = BN_CTX_get(ctx);
  429. if (!t) {
  430. goto err;
  431. }
  432. loop:
  433. // make a random number and set the top and bottom bits
  434. if (add == NULL) {
  435. if (!probable_prime(ret, bits)) {
  436. goto err;
  437. }
  438. } else {
  439. if (safe) {
  440. if (!probable_prime_dh_safe(ret, bits, add, rem, ctx)) {
  441. goto err;
  442. }
  443. } else {
  444. if (!probable_prime_dh(ret, bits, add, rem, ctx)) {
  445. goto err;
  446. }
  447. }
  448. }
  449. if (!BN_GENCB_call(cb, BN_GENCB_GENERATED, c1++)) {
  450. // aborted
  451. goto err;
  452. }
  453. if (!safe) {
  454. i = BN_is_prime_fasttest_ex(ret, checks, ctx, 0, cb);
  455. if (i == -1) {
  456. goto err;
  457. } else if (i == 0) {
  458. goto loop;
  459. }
  460. } else {
  461. // for "safe prime" generation, check that (p-1)/2 is prime. Since a prime
  462. // is odd, We just need to divide by 2
  463. if (!BN_rshift1(t, ret)) {
  464. goto err;
  465. }
  466. for (i = 0; i < checks; i++) {
  467. j = BN_is_prime_fasttest_ex(ret, 1, ctx, 0, NULL);
  468. if (j == -1) {
  469. goto err;
  470. } else if (j == 0) {
  471. goto loop;
  472. }
  473. j = BN_is_prime_fasttest_ex(t, 1, ctx, 0, NULL);
  474. if (j == -1) {
  475. goto err;
  476. } else if (j == 0) {
  477. goto loop;
  478. }
  479. if (!BN_GENCB_call(cb, i, c1 - 1)) {
  480. goto err;
  481. }
  482. // We have a safe prime test pass
  483. }
  484. }
  485. // we have a prime :-)
  486. found = 1;
  487. err:
  488. if (ctx != NULL) {
  489. BN_CTX_end(ctx);
  490. BN_CTX_free(ctx);
  491. }
  492. return found;
  493. }
  494. // The following functions use a Barrett reduction variant to avoid leaking the
  495. // numerator. See http://ridiculousfish.com/blog/posts/labor-of-division-episode-i.html
  496. //
  497. // We use 32-bit numerator and 16-bit divisor for simplicity. This allows
  498. // computing |m| and |q| without architecture-specific code.
  499. // mod_u16 returns |n| mod |d|. |p| and |m| are the "magic numbers" for |d| (see
  500. // reference). For proof of correctness in Coq, see
  501. // https://github.com/davidben/fiat-crypto/blob/barrett/src/Arithmetic/BarrettReduction/RidiculousFish.v
  502. // Note the Coq version of |mod_u16| additionally includes the computation of
  503. // |p| and |m| from |bn_mod_u16_consttime| below.
  504. static uint16_t mod_u16(uint32_t n, uint16_t d, uint32_t p, uint32_t m) {
  505. // Compute floor(n/d) per steps 3 through 5.
  506. uint32_t q = ((uint64_t)m * n) >> 32;
  507. // Note there is a typo in the reference. We right-shift by one, not two.
  508. uint32_t t = ((n - q) >> 1) + q;
  509. t = t >> (p - 1);
  510. // Multiply and subtract to get the remainder.
  511. n -= d * t;
  512. assert(n < d);
  513. return n;
  514. }
  515. // shift_and_add_mod_u16 returns |r| * 2^32 + |a| mod |d|. |p| and |m| are the
  516. // "magic numbers" for |d| (see reference).
  517. static uint16_t shift_and_add_mod_u16(uint16_t r, uint32_t a, uint16_t d,
  518. uint32_t p, uint32_t m) {
  519. // Incorporate |a| in two 16-bit chunks.
  520. uint32_t t = r;
  521. t <<= 16;
  522. t |= a >> 16;
  523. t = mod_u16(t, d, p, m);
  524. t <<= 16;
  525. t |= a & 0xffff;
  526. t = mod_u16(t, d, p, m);
  527. return t;
  528. }
  529. uint16_t bn_mod_u16_consttime(const BIGNUM *bn, uint16_t d) {
  530. if (d <= 1) {
  531. return 0;
  532. }
  533. // Compute the "magic numbers" for |d|. See steps 1 and 2.
  534. // This computes p = ceil(log_2(d)).
  535. uint32_t p = BN_num_bits_word(d - 1);
  536. // This operation is not constant-time, but |p| and |d| are public values.
  537. // Note that |p| is at most 16, so the computation fits in |uint64_t|.
  538. assert(p <= 16);
  539. uint32_t m = ((UINT64_C(1) << (32 + p)) + d - 1) / d;
  540. uint16_t ret = 0;
  541. for (int i = bn->width - 1; i >= 0; i--) {
  542. #if BN_BITS2 == 32
  543. ret = shift_and_add_mod_u16(ret, bn->d[i], d, p, m);
  544. #elif BN_BITS2 == 64
  545. ret = shift_and_add_mod_u16(ret, bn->d[i] >> 32, d, p, m);
  546. ret = shift_and_add_mod_u16(ret, bn->d[i] & 0xffffffff, d, p, m);
  547. #else
  548. #error "Unknown BN_ULONG size"
  549. #endif
  550. }
  551. return ret;
  552. }
  553. static int bn_trial_division(uint16_t *out, const BIGNUM *bn) {
  554. for (int i = 1; i < NUMPRIMES; i++) {
  555. if (bn_mod_u16_consttime(bn, primes[i]) == 0) {
  556. *out = primes[i];
  557. return 1;
  558. }
  559. }
  560. return 0;
  561. }
  562. int bn_odd_number_is_obviously_composite(const BIGNUM *bn) {
  563. uint16_t prime;
  564. return bn_trial_division(&prime, bn) && !BN_is_word(bn, prime);
  565. }
  566. int BN_primality_test(int *is_probably_prime, const BIGNUM *w,
  567. int iterations, BN_CTX *ctx, int do_trial_division,
  568. BN_GENCB *cb) {
  569. *is_probably_prime = 0;
  570. // To support RSA key generation, this function should treat |w| as secret if
  571. // it is a large prime. Composite numbers are discarded, so they may return
  572. // early.
  573. if (BN_cmp(w, BN_value_one()) <= 0) {
  574. return 1;
  575. }
  576. if (!BN_is_odd(w)) {
  577. // The only even prime is two.
  578. *is_probably_prime = BN_is_word(w, 2);
  579. return 1;
  580. }
  581. // Miller-Rabin does not work for three.
  582. if (BN_is_word(w, 3)) {
  583. *is_probably_prime = 1;
  584. return 1;
  585. }
  586. if (do_trial_division) {
  587. // Perform additional trial division checks to discard small primes.
  588. uint16_t prime;
  589. if (bn_trial_division(&prime, w)) {
  590. *is_probably_prime = BN_is_word(w, prime);
  591. return 1;
  592. }
  593. if (!BN_GENCB_call(cb, 1, -1)) {
  594. return 0;
  595. }
  596. }
  597. if (iterations == BN_prime_checks) {
  598. iterations = BN_prime_checks_for_size(BN_num_bits(w));
  599. }
  600. // See C.3.1 from FIPS 186-4.
  601. int ret = 0;
  602. BN_MONT_CTX *mont = NULL;
  603. BN_CTX_start(ctx);
  604. BIGNUM *w1 = BN_CTX_get(ctx);
  605. if (w1 == NULL ||
  606. !bn_usub_consttime(w1, w, BN_value_one())) {
  607. goto err;
  608. }
  609. // Write w1 as m * 2^a (Steps 1 and 2).
  610. int w_len = BN_num_bits(w);
  611. int a = BN_count_low_zero_bits(w1);
  612. BIGNUM *m = BN_CTX_get(ctx);
  613. if (m == NULL ||
  614. !bn_rshift_secret_shift(m, w1, a, ctx)) {
  615. goto err;
  616. }
  617. // Montgomery setup for computations mod w. Additionally, compute 1 and w - 1
  618. // in the Montgomery domain for later comparisons.
  619. BIGNUM *b = BN_CTX_get(ctx);
  620. BIGNUM *z = BN_CTX_get(ctx);
  621. BIGNUM *one_mont = BN_CTX_get(ctx);
  622. BIGNUM *w1_mont = BN_CTX_get(ctx);
  623. mont = BN_MONT_CTX_new_for_modulus(w, ctx);
  624. if (b == NULL || z == NULL || one_mont == NULL || w1_mont == NULL ||
  625. mont == NULL ||
  626. !bn_one_to_montgomery(one_mont, mont, ctx) ||
  627. // w - 1 is -1 mod w, so we can compute it in the Montgomery domain, -R,
  628. // with a subtraction. (|one_mont| cannot be zero.)
  629. !bn_usub_consttime(w1_mont, w, one_mont)) {
  630. goto err;
  631. }
  632. // The following loop performs in inner iteration of the Miller-Rabin
  633. // Primality test (Step 4).
  634. //
  635. // The algorithm as specified in FIPS 186-4 leaks information on |w|, the RSA
  636. // private key. Instead, we run through each iteration unconditionally,
  637. // performing modular multiplications, masking off any effects to behave
  638. // equivalently to the specified algorithm.
  639. //
  640. // We also blind the number of values of |b| we try. Steps 4.1–4.2 say to
  641. // discard out-of-range values. To avoid leaking information on |w|, we use
  642. // |bn_rand_secret_range| which, rather than discarding bad values, adjusts
  643. // them to be in range. Though not uniformly selected, these adjusted values
  644. // are still usable as Rabin-Miller checks.
  645. //
  646. // Rabin-Miller is already probabilistic, so we could reach the desired
  647. // confidence levels by just suitably increasing the iteration count. However,
  648. // to align with FIPS 186-4, we use a more pessimal analysis: we do not count
  649. // the non-uniform values towards the iteration count. As a result, this
  650. // function is more complex and has more timing risk than necessary.
  651. //
  652. // We count both total iterations and uniform ones and iterate until we've
  653. // reached at least |BN_PRIME_CHECKS_BLINDED| and |iterations|, respectively.
  654. // If the latter is large enough, it will be the limiting factor with high
  655. // probability and we won't leak information.
  656. //
  657. // Note this blinding does not impact most calls when picking primes because
  658. // composites are rejected early. Only the two secret primes see extra work.
  659. crypto_word_t uniform_iterations = 0;
  660. // Using |constant_time_lt_w| seems to prevent the compiler from optimizing
  661. // this into two jumps.
  662. for (int i = 1; (i <= BN_PRIME_CHECKS_BLINDED) |
  663. constant_time_lt_w(uniform_iterations, iterations);
  664. i++) {
  665. int is_uniform;
  666. if (// Step 4.1-4.2
  667. !bn_rand_secret_range(b, &is_uniform, 2, w1) ||
  668. // Step 4.3
  669. !BN_mod_exp_mont_consttime(z, b, m, w, ctx, mont)) {
  670. goto err;
  671. }
  672. uniform_iterations += is_uniform;
  673. // loop_done is all ones if the loop has completed and all zeros otherwise.
  674. crypto_word_t loop_done = 0;
  675. // next_iteration is all ones if we should continue to the next iteration
  676. // (|b| is not a composite witness for |w|). This is equivalent to going to
  677. // step 4.7 in the original algorithm.
  678. crypto_word_t next_iteration = 0;
  679. // Step 4.4. If z = 1 or z = w-1, mask off the loop and continue to the next
  680. // iteration (go to step 4.7).
  681. loop_done = BN_equal_consttime(z, BN_value_one()) |
  682. BN_equal_consttime(z, w1);
  683. loop_done = 0 - loop_done; // Make it all zeros or all ones.
  684. next_iteration = loop_done; // Go to step 4.7 if |loop_done|.
  685. // Step 4.5. We use Montgomery-encoding for better performance and to avoid
  686. // timing leaks.
  687. if (!BN_to_montgomery(z, z, mont, ctx)) {
  688. goto err;
  689. }
  690. // To avoid leaking |a|, we run the loop to |w_len| and mask off all
  691. // iterations once |j| = |a|.
  692. for (int j = 1; j < w_len; j++) {
  693. loop_done |= constant_time_eq_int(j, a);
  694. // Step 4.5.1.
  695. if (!BN_mod_mul_montgomery(z, z, z, mont, ctx)) {
  696. goto err;
  697. }
  698. // Step 4.5.2. If z = w-1 and the loop is not done, run through the next
  699. // iteration.
  700. crypto_word_t z_is_w1_mont = BN_equal_consttime(z, w1_mont) & ~loop_done;
  701. z_is_w1_mont = 0 - z_is_w1_mont; // Make it all zeros or all ones.
  702. loop_done |= z_is_w1_mont;
  703. next_iteration |= z_is_w1_mont; // Go to step 4.7 if |z_is_w1_mont|.
  704. // Step 4.5.3. If z = 1 and the loop is not done, w is composite and we
  705. // may exit in variable time.
  706. if (BN_equal_consttime(z, one_mont) & ~loop_done) {
  707. assert(!next_iteration);
  708. break;
  709. }
  710. }
  711. if (!next_iteration) {
  712. // Step 4.6. We did not see z = w-1 before z = 1, so w must be composite.
  713. // (For any prime, the value of z immediately preceding 1 must be -1.
  714. // There are no non-trivial square roots of 1 modulo a prime.)
  715. *is_probably_prime = 0;
  716. ret = 1;
  717. goto err;
  718. }
  719. // Step 4.7
  720. if (!BN_GENCB_call(cb, 1, i)) {
  721. goto err;
  722. }
  723. }
  724. assert(uniform_iterations >= (crypto_word_t)iterations);
  725. *is_probably_prime = 1;
  726. ret = 1;
  727. err:
  728. BN_MONT_CTX_free(mont);
  729. BN_CTX_end(ctx);
  730. return ret;
  731. }
  732. int BN_is_prime_ex(const BIGNUM *candidate, int checks, BN_CTX *ctx, BN_GENCB *cb) {
  733. return BN_is_prime_fasttest_ex(candidate, checks, ctx, 0, cb);
  734. }
  735. int BN_is_prime_fasttest_ex(const BIGNUM *a, int checks, BN_CTX *ctx,
  736. int do_trial_division, BN_GENCB *cb) {
  737. int is_probably_prime;
  738. if (!BN_primality_test(&is_probably_prime, a, checks, ctx, do_trial_division,
  739. cb)) {
  740. return -1;
  741. }
  742. return is_probably_prime;
  743. }
  744. int BN_enhanced_miller_rabin_primality_test(
  745. enum bn_primality_result_t *out_result, const BIGNUM *w, int iterations,
  746. BN_CTX *ctx, BN_GENCB *cb) {
  747. // Enhanced Miller-Rabin is only valid on odd integers greater than 3.
  748. if (!BN_is_odd(w) || BN_cmp_word(w, 3) <= 0) {
  749. OPENSSL_PUT_ERROR(BN, BN_R_INVALID_INPUT);
  750. return 0;
  751. }
  752. if (iterations == BN_prime_checks) {
  753. iterations = BN_prime_checks_for_size(BN_num_bits(w));
  754. }
  755. int ret = 0;
  756. BN_MONT_CTX *mont = NULL;
  757. BN_CTX_start(ctx);
  758. BIGNUM *w1 = BN_CTX_get(ctx);
  759. if (w1 == NULL ||
  760. !BN_copy(w1, w) ||
  761. !BN_sub_word(w1, 1)) {
  762. goto err;
  763. }
  764. // Write w1 as m*2^a (Steps 1 and 2).
  765. int a = 0;
  766. while (!BN_is_bit_set(w1, a)) {
  767. a++;
  768. }
  769. BIGNUM *m = BN_CTX_get(ctx);
  770. if (m == NULL ||
  771. !BN_rshift(m, w1, a)) {
  772. goto err;
  773. }
  774. BIGNUM *b = BN_CTX_get(ctx);
  775. BIGNUM *g = BN_CTX_get(ctx);
  776. BIGNUM *z = BN_CTX_get(ctx);
  777. BIGNUM *x = BN_CTX_get(ctx);
  778. BIGNUM *x1 = BN_CTX_get(ctx);
  779. if (b == NULL ||
  780. g == NULL ||
  781. z == NULL ||
  782. x == NULL ||
  783. x1 == NULL) {
  784. goto err;
  785. }
  786. // Montgomery setup for computations mod w
  787. mont = BN_MONT_CTX_new_for_modulus(w, ctx);
  788. if (mont == NULL) {
  789. goto err;
  790. }
  791. // The following loop performs in inner iteration of the Enhanced Miller-Rabin
  792. // Primality test (Step 4).
  793. for (int i = 1; i <= iterations; i++) {
  794. // Step 4.1-4.2
  795. if (!BN_rand_range_ex(b, 2, w1)) {
  796. goto err;
  797. }
  798. // Step 4.3-4.4
  799. if (!BN_gcd(g, b, w, ctx)) {
  800. goto err;
  801. }
  802. if (BN_cmp_word(g, 1) > 0) {
  803. *out_result = bn_composite;
  804. ret = 1;
  805. goto err;
  806. }
  807. // Step 4.5
  808. if (!BN_mod_exp_mont(z, b, m, w, ctx, mont)) {
  809. goto err;
  810. }
  811. // Step 4.6
  812. if (BN_is_one(z) || BN_cmp(z, w1) == 0) {
  813. goto loop;
  814. }
  815. // Step 4.7
  816. for (int j = 1; j < a; j++) {
  817. if (!BN_copy(x, z) || !BN_mod_mul(z, x, x, w, ctx)) {
  818. goto err;
  819. }
  820. if (BN_cmp(z, w1) == 0) {
  821. goto loop;
  822. }
  823. if (BN_is_one(z)) {
  824. goto composite;
  825. }
  826. }
  827. // Step 4.8-4.9
  828. if (!BN_copy(x, z) || !BN_mod_mul(z, x, x, w, ctx)) {
  829. goto err;
  830. }
  831. // Step 4.10-4.11
  832. if (!BN_is_one(z) && !BN_copy(x, z)) {
  833. goto err;
  834. }
  835. composite:
  836. // Step 4.12-4.14
  837. if (!BN_copy(x1, x) ||
  838. !BN_sub_word(x1, 1) ||
  839. !BN_gcd(g, x1, w, ctx)) {
  840. goto err;
  841. }
  842. if (BN_cmp_word(g, 1) > 0) {
  843. *out_result = bn_composite;
  844. } else {
  845. *out_result = bn_non_prime_power_composite;
  846. }
  847. ret = 1;
  848. goto err;
  849. loop:
  850. // Step 4.15
  851. if (!BN_GENCB_call(cb, 1, i)) {
  852. goto err;
  853. }
  854. }
  855. *out_result = bn_probably_prime;
  856. ret = 1;
  857. err:
  858. BN_MONT_CTX_free(mont);
  859. BN_CTX_end(ctx);
  860. return ret;
  861. }
  862. static int probable_prime(BIGNUM *rnd, int bits) {
  863. int i;
  864. uint16_t mods[NUMPRIMES];
  865. BN_ULONG delta;
  866. BN_ULONG maxdelta = BN_MASK2 - primes[NUMPRIMES - 1];
  867. char is_single_word = bits <= BN_BITS2;
  868. again:
  869. if (!BN_rand(rnd, bits, BN_RAND_TOP_TWO, BN_RAND_BOTTOM_ODD)) {
  870. return 0;
  871. }
  872. // we now have a random number 'rnd' to test.
  873. for (i = 1; i < NUMPRIMES; i++) {
  874. mods[i] = bn_mod_u16_consttime(rnd, primes[i]);
  875. }
  876. // If bits is so small that it fits into a single word then we
  877. // additionally don't want to exceed that many bits.
  878. if (is_single_word) {
  879. BN_ULONG size_limit;
  880. if (bits == BN_BITS2) {
  881. // Avoid undefined behavior.
  882. size_limit = ~((BN_ULONG)0) - BN_get_word(rnd);
  883. } else {
  884. size_limit = (((BN_ULONG)1) << bits) - BN_get_word(rnd) - 1;
  885. }
  886. if (size_limit < maxdelta) {
  887. maxdelta = size_limit;
  888. }
  889. }
  890. delta = 0;
  891. loop:
  892. if (is_single_word) {
  893. BN_ULONG rnd_word = BN_get_word(rnd);
  894. // In the case that the candidate prime is a single word then
  895. // we check that:
  896. // 1) It's greater than primes[i] because we shouldn't reject
  897. // 3 as being a prime number because it's a multiple of
  898. // three.
  899. // 2) That it's not a multiple of a known prime. We don't
  900. // check that rnd-1 is also coprime to all the known
  901. // primes because there aren't many small primes where
  902. // that's true.
  903. for (i = 1; i < NUMPRIMES && primes[i] < rnd_word; i++) {
  904. if ((mods[i] + delta) % primes[i] == 0) {
  905. delta += 2;
  906. if (delta > maxdelta) {
  907. goto again;
  908. }
  909. goto loop;
  910. }
  911. }
  912. } else {
  913. for (i = 1; i < NUMPRIMES; i++) {
  914. // check that rnd is not a prime and also
  915. // that gcd(rnd-1,primes) == 1 (except for 2)
  916. if (((mods[i] + delta) % primes[i]) <= 1) {
  917. delta += 2;
  918. if (delta > maxdelta) {
  919. goto again;
  920. }
  921. goto loop;
  922. }
  923. }
  924. }
  925. if (!BN_add_word(rnd, delta)) {
  926. return 0;
  927. }
  928. if (BN_num_bits(rnd) != (unsigned)bits) {
  929. goto again;
  930. }
  931. return 1;
  932. }
  933. static int probable_prime_dh(BIGNUM *rnd, int bits, const BIGNUM *add,
  934. const BIGNUM *rem, BN_CTX *ctx) {
  935. int i, ret = 0;
  936. BIGNUM *t1;
  937. BN_CTX_start(ctx);
  938. if ((t1 = BN_CTX_get(ctx)) == NULL) {
  939. goto err;
  940. }
  941. if (!BN_rand(rnd, bits, BN_RAND_TOP_ONE, BN_RAND_BOTTOM_ODD)) {
  942. goto err;
  943. }
  944. // we need ((rnd-rem) % add) == 0
  945. if (!BN_mod(t1, rnd, add, ctx)) {
  946. goto err;
  947. }
  948. if (!BN_sub(rnd, rnd, t1)) {
  949. goto err;
  950. }
  951. if (rem == NULL) {
  952. if (!BN_add_word(rnd, 1)) {
  953. goto err;
  954. }
  955. } else {
  956. if (!BN_add(rnd, rnd, rem)) {
  957. goto err;
  958. }
  959. }
  960. // we now have a random number 'rand' to test.
  961. loop:
  962. for (i = 1; i < NUMPRIMES; i++) {
  963. // check that rnd is a prime
  964. if (bn_mod_u16_consttime(rnd, primes[i]) <= 1) {
  965. if (!BN_add(rnd, rnd, add)) {
  966. goto err;
  967. }
  968. goto loop;
  969. }
  970. }
  971. ret = 1;
  972. err:
  973. BN_CTX_end(ctx);
  974. return ret;
  975. }
  976. static int probable_prime_dh_safe(BIGNUM *p, int bits, const BIGNUM *padd,
  977. const BIGNUM *rem, BN_CTX *ctx) {
  978. int i, ret = 0;
  979. BIGNUM *t1, *qadd, *q;
  980. bits--;
  981. BN_CTX_start(ctx);
  982. t1 = BN_CTX_get(ctx);
  983. q = BN_CTX_get(ctx);
  984. qadd = BN_CTX_get(ctx);
  985. if (qadd == NULL) {
  986. goto err;
  987. }
  988. if (!BN_rshift1(qadd, padd)) {
  989. goto err;
  990. }
  991. if (!BN_rand(q, bits, BN_RAND_TOP_ONE, BN_RAND_BOTTOM_ODD)) {
  992. goto err;
  993. }
  994. // we need ((rnd-rem) % add) == 0
  995. if (!BN_mod(t1, q, qadd, ctx)) {
  996. goto err;
  997. }
  998. if (!BN_sub(q, q, t1)) {
  999. goto err;
  1000. }
  1001. if (rem == NULL) {
  1002. if (!BN_add_word(q, 1)) {
  1003. goto err;
  1004. }
  1005. } else {
  1006. if (!BN_rshift1(t1, rem)) {
  1007. goto err;
  1008. }
  1009. if (!BN_add(q, q, t1)) {
  1010. goto err;
  1011. }
  1012. }
  1013. // we now have a random number 'rand' to test.
  1014. if (!BN_lshift1(p, q)) {
  1015. goto err;
  1016. }
  1017. if (!BN_add_word(p, 1)) {
  1018. goto err;
  1019. }
  1020. loop:
  1021. for (i = 1; i < NUMPRIMES; i++) {
  1022. // check that p and q are prime
  1023. // check that for p and q
  1024. // gcd(p-1,primes) == 1 (except for 2)
  1025. if (bn_mod_u16_consttime(p, primes[i]) == 0 ||
  1026. bn_mod_u16_consttime(q, primes[i]) == 0) {
  1027. if (!BN_add(p, p, padd)) {
  1028. goto err;
  1029. }
  1030. if (!BN_add(q, q, qadd)) {
  1031. goto err;
  1032. }
  1033. goto loop;
  1034. }
  1035. }
  1036. ret = 1;
  1037. err:
  1038. BN_CTX_end(ctx);
  1039. return ret;
  1040. }