| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683 |
- /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
- * All rights reserved.
- *
- * This package is an SSL implementation written
- * by Eric Young (eay@cryptsoft.com).
- * The implementation was written so as to conform with Netscapes SSL.
- *
- * This library is free for commercial and non-commercial use as long as
- * the following conditions are aheared to. The following conditions
- * apply to all code found in this distribution, be it the RC4, RSA,
- * lhash, DES, etc., code; not just the SSL code. The SSL documentation
- * included with this distribution is covered by the same copyright terms
- * except that the holder is Tim Hudson (tjh@cryptsoft.com).
- *
- * Copyright remains Eric Young's, and as such any Copyright notices in
- * the code are not to be removed.
- * If this package is used in a product, Eric Young should be given attribution
- * as the author of the parts of the library used.
- * This can be in the form of a textual message at program startup or
- * in documentation (online or textual) provided with the package.
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions
- * are met:
- * 1. Redistributions of source code must retain the copyright
- * notice, this list of conditions and the following disclaimer.
- * 2. Redistributions in binary form must reproduce the above copyright
- * notice, this list of conditions and the following disclaimer in the
- * documentation and/or other materials provided with the distribution.
- * 3. All advertising materials mentioning features or use of this software
- * must display the following acknowledgement:
- * "This product includes cryptographic software written by
- * Eric Young (eay@cryptsoft.com)"
- * The word 'cryptographic' can be left out if the rouines from the library
- * being used are not cryptographic related :-).
- * 4. If you include any Windows specific code (or a derivative thereof) from
- * the apps directory (application code) you must include an acknowledgement:
- * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
- *
- * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
- * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
- * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
- * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
- * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
- * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
- * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
- * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
- * SUCH DAMAGE.
- *
- * The licence and distribution terms for any publically available version or
- * derivative of this code cannot be changed. i.e. this code cannot simply be
- * copied and put under another distribution licence
- * [including the GNU Public Licence.]
- */
- /* ====================================================================
- * Copyright (c) 1998-2001 The OpenSSL Project. All rights reserved.
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions
- * are met:
- *
- * 1. Redistributions of source code must retain the above copyright
- * notice, this list of conditions and the following disclaimer.
- *
- * 2. Redistributions in binary form must reproduce the above copyright
- * notice, this list of conditions and the following disclaimer in
- * the documentation and/or other materials provided with the
- * distribution.
- *
- * 3. All advertising materials mentioning features or use of this
- * software must display the following acknowledgment:
- * "This product includes software developed by the OpenSSL Project
- * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
- *
- * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
- * endorse or promote products derived from this software without
- * prior written permission. For written permission, please contact
- * openssl-core@openssl.org.
- *
- * 5. Products derived from this software may not be called "OpenSSL"
- * nor may "OpenSSL" appear in their names without prior written
- * permission of the OpenSSL Project.
- *
- * 6. Redistributions of any form whatsoever must retain the following
- * acknowledgment:
- * "This product includes software developed by the OpenSSL Project
- * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
- *
- * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
- * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
- * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
- * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
- * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
- * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
- * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
- * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
- * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
- * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
- * OF THE POSSIBILITY OF SUCH DAMAGE.
- * ====================================================================
- *
- * This product includes cryptographic software written by Eric Young
- * (eay@cryptsoft.com). This product includes software written by Tim
- * Hudson (tjh@cryptsoft.com). */
- #include <openssl/bn.h>
- #include <assert.h>
- #include <openssl/err.h>
- #include "internal.h"
- static BN_ULONG word_is_odd_mask(BN_ULONG a) { return (BN_ULONG)0 - (a & 1); }
- static void maybe_rshift1_words(BN_ULONG *a, BN_ULONG mask, BN_ULONG *tmp,
- size_t num) {
- bn_rshift1_words(tmp, a, num);
- bn_select_words(a, mask, tmp, a, num);
- }
- static void maybe_rshift1_words_carry(BN_ULONG *a, BN_ULONG carry,
- BN_ULONG mask, BN_ULONG *tmp,
- size_t num) {
- maybe_rshift1_words(a, mask, tmp, num);
- if (num != 0) {
- carry &= mask;
- a[num - 1] |= carry << (BN_BITS2-1);
- }
- }
- static BN_ULONG maybe_add_words(BN_ULONG *a, BN_ULONG mask, const BN_ULONG *b,
- BN_ULONG *tmp, size_t num) {
- BN_ULONG carry = bn_add_words(tmp, a, b, num);
- bn_select_words(a, mask, tmp, a, num);
- return carry & mask;
- }
- static int bn_gcd_consttime(BIGNUM *r, unsigned *out_shift, const BIGNUM *x,
- const BIGNUM *y, BN_CTX *ctx) {
- size_t width = x->width > y->width ? x->width : y->width;
- if (width == 0) {
- *out_shift = 0;
- BN_zero(r);
- return 1;
- }
- // This is a constant-time implementation of Stein's algorithm (binary GCD).
- int ret = 0;
- BN_CTX_start(ctx);
- BIGNUM *u = BN_CTX_get(ctx);
- BIGNUM *v = BN_CTX_get(ctx);
- BIGNUM *tmp = BN_CTX_get(ctx);
- if (u == NULL || v == NULL || tmp == NULL ||
- !BN_copy(u, x) ||
- !BN_copy(v, y) ||
- !bn_resize_words(u, width) ||
- !bn_resize_words(v, width) ||
- !bn_resize_words(tmp, width)) {
- goto err;
- }
- // Each loop iteration halves at least one of |u| and |v|. Thus we need at
- // most the combined bit width of inputs for at least one value to be zero.
- unsigned x_bits = x->width * BN_BITS2, y_bits = y->width * BN_BITS2;
- unsigned num_iters = x_bits + y_bits;
- if (num_iters < x_bits) {
- OPENSSL_PUT_ERROR(BN, BN_R_BIGNUM_TOO_LONG);
- goto err;
- }
- unsigned shift = 0;
- for (unsigned i = 0; i < num_iters; i++) {
- BN_ULONG both_odd = word_is_odd_mask(u->d[0]) & word_is_odd_mask(v->d[0]);
- // If both |u| and |v| are odd, subtract the smaller from the larger.
- BN_ULONG u_less_than_v =
- (BN_ULONG)0 - bn_sub_words(tmp->d, u->d, v->d, width);
- bn_select_words(u->d, both_odd & ~u_less_than_v, tmp->d, u->d, width);
- bn_sub_words(tmp->d, v->d, u->d, width);
- bn_select_words(v->d, both_odd & u_less_than_v, tmp->d, v->d, width);
- // At least one of |u| and |v| is now even.
- BN_ULONG u_is_odd = word_is_odd_mask(u->d[0]);
- BN_ULONG v_is_odd = word_is_odd_mask(v->d[0]);
- assert(!(u_is_odd & v_is_odd));
- // If both are even, the final GCD gains a factor of two.
- shift += 1 & (~u_is_odd & ~v_is_odd);
- // Halve any which are even.
- maybe_rshift1_words(u->d, ~u_is_odd, tmp->d, width);
- maybe_rshift1_words(v->d, ~v_is_odd, tmp->d, width);
- }
- // One of |u| or |v| is zero at this point. The algorithm usually makes |u|
- // zero, unless |y| was already zero on input. Fix this by combining the
- // values.
- assert(BN_is_zero(u) || BN_is_zero(v));
- for (size_t i = 0; i < width; i++) {
- v->d[i] |= u->d[i];
- }
- *out_shift = shift;
- ret = bn_set_words(r, v->d, width);
- err:
- BN_CTX_end(ctx);
- return ret;
- }
- int BN_gcd(BIGNUM *r, const BIGNUM *x, const BIGNUM *y, BN_CTX *ctx) {
- unsigned shift;
- return bn_gcd_consttime(r, &shift, x, y, ctx) &&
- BN_lshift(r, r, shift);
- }
- int bn_is_relatively_prime(int *out_relatively_prime, const BIGNUM *x,
- const BIGNUM *y, BN_CTX *ctx) {
- int ret = 0;
- BN_CTX_start(ctx);
- unsigned shift;
- BIGNUM *gcd = BN_CTX_get(ctx);
- if (gcd == NULL ||
- !bn_gcd_consttime(gcd, &shift, x, y, ctx)) {
- goto err;
- }
- // Check that 2^|shift| * |gcd| is one.
- if (gcd->width == 0) {
- *out_relatively_prime = 0;
- } else {
- BN_ULONG mask = shift | (gcd->d[0] ^ 1);
- for (int i = 1; i < gcd->width; i++) {
- mask |= gcd->d[i];
- }
- *out_relatively_prime = mask == 0;
- }
- ret = 1;
- err:
- BN_CTX_end(ctx);
- return ret;
- }
- int bn_lcm_consttime(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx) {
- BN_CTX_start(ctx);
- unsigned shift;
- BIGNUM *gcd = BN_CTX_get(ctx);
- int ret = gcd != NULL &&
- bn_mul_consttime(r, a, b, ctx) &&
- bn_gcd_consttime(gcd, &shift, a, b, ctx) &&
- bn_div_consttime(r, NULL, r, gcd, ctx) &&
- bn_rshift_secret_shift(r, r, shift, ctx);
- BN_CTX_end(ctx);
- return ret;
- }
- int bn_mod_inverse_consttime(BIGNUM *r, int *out_no_inverse, const BIGNUM *a,
- const BIGNUM *n, BN_CTX *ctx) {
- *out_no_inverse = 0;
- if (BN_is_negative(a) || BN_ucmp(a, n) >= 0) {
- OPENSSL_PUT_ERROR(BN, BN_R_INPUT_NOT_REDUCED);
- return 0;
- }
- if (BN_is_zero(a)) {
- if (BN_is_one(n)) {
- BN_zero(r);
- return 1;
- }
- *out_no_inverse = 1;
- OPENSSL_PUT_ERROR(BN, BN_R_NO_INVERSE);
- return 0;
- }
- // This is a constant-time implementation of the extended binary GCD
- // algorithm. It is adapted from the Handbook of Applied Cryptography, section
- // 14.4.3, algorithm 14.51, and modified to bound coefficients and avoid
- // negative numbers.
- //
- // For more details and proof of correctness, see
- // https://github.com/mit-plv/fiat-crypto/pull/333. In particular, see |step|
- // and |mod_inverse_consttime| for the algorithm in Gallina and see
- // |mod_inverse_consttime_spec| for the correctness result.
- if (!BN_is_odd(a) && !BN_is_odd(n)) {
- *out_no_inverse = 1;
- OPENSSL_PUT_ERROR(BN, BN_R_NO_INVERSE);
- return 0;
- }
- // This function exists to compute the RSA private exponent, where |a| is one
- // word. We'll thus use |a_width| when available.
- size_t n_width = n->width, a_width = a->width;
- if (a_width > n_width) {
- a_width = n_width;
- }
- int ret = 0;
- BN_CTX_start(ctx);
- BIGNUM *u = BN_CTX_get(ctx);
- BIGNUM *v = BN_CTX_get(ctx);
- BIGNUM *A = BN_CTX_get(ctx);
- BIGNUM *B = BN_CTX_get(ctx);
- BIGNUM *C = BN_CTX_get(ctx);
- BIGNUM *D = BN_CTX_get(ctx);
- BIGNUM *tmp = BN_CTX_get(ctx);
- BIGNUM *tmp2 = BN_CTX_get(ctx);
- if (u == NULL || v == NULL || A == NULL || B == NULL || C == NULL ||
- D == NULL || tmp == NULL || tmp2 == NULL ||
- !BN_copy(u, a) ||
- !BN_copy(v, n) ||
- !BN_one(A) ||
- !BN_one(D) ||
- // For convenience, size |u| and |v| equivalently.
- !bn_resize_words(u, n_width) ||
- !bn_resize_words(v, n_width) ||
- // |A| and |C| are bounded by |m|.
- !bn_resize_words(A, n_width) ||
- !bn_resize_words(C, n_width) ||
- // |B| and |D| are bounded by |a|.
- !bn_resize_words(B, a_width) ||
- !bn_resize_words(D, a_width) ||
- // |tmp| and |tmp2| may be used at either size.
- !bn_resize_words(tmp, n_width) ||
- !bn_resize_words(tmp2, n_width)) {
- goto err;
- }
- // Each loop iteration halves at least one of |u| and |v|. Thus we need at
- // most the combined bit width of inputs for at least one value to be zero.
- unsigned a_bits = a_width * BN_BITS2, n_bits = n_width * BN_BITS2;
- unsigned num_iters = a_bits + n_bits;
- if (num_iters < a_bits) {
- OPENSSL_PUT_ERROR(BN, BN_R_BIGNUM_TOO_LONG);
- goto err;
- }
- // Before and after each loop iteration, the following hold:
- //
- // u = A*a - B*n
- // v = D*n - C*a
- // 0 < u <= a
- // 0 <= v <= n
- // 0 <= A < n
- // 0 <= B <= a
- // 0 <= C < n
- // 0 <= D <= a
- //
- // After each loop iteration, u and v only get smaller, and at least one of
- // them shrinks by at least a factor of two.
- for (unsigned i = 0; i < num_iters; i++) {
- BN_ULONG both_odd = word_is_odd_mask(u->d[0]) & word_is_odd_mask(v->d[0]);
- // If both |u| and |v| are odd, subtract the smaller from the larger.
- BN_ULONG v_less_than_u =
- (BN_ULONG)0 - bn_sub_words(tmp->d, v->d, u->d, n_width);
- bn_select_words(v->d, both_odd & ~v_less_than_u, tmp->d, v->d, n_width);
- bn_sub_words(tmp->d, u->d, v->d, n_width);
- bn_select_words(u->d, both_odd & v_less_than_u, tmp->d, u->d, n_width);
- // If we updated one of the values, update the corresponding coefficient.
- BN_ULONG carry = bn_add_words(tmp->d, A->d, C->d, n_width);
- carry -= bn_sub_words(tmp2->d, tmp->d, n->d, n_width);
- bn_select_words(tmp->d, carry, tmp->d, tmp2->d, n_width);
- bn_select_words(A->d, both_odd & v_less_than_u, tmp->d, A->d, n_width);
- bn_select_words(C->d, both_odd & ~v_less_than_u, tmp->d, C->d, n_width);
- bn_add_words(tmp->d, B->d, D->d, a_width);
- bn_sub_words(tmp2->d, tmp->d, a->d, a_width);
- bn_select_words(tmp->d, carry, tmp->d, tmp2->d, a_width);
- bn_select_words(B->d, both_odd & v_less_than_u, tmp->d, B->d, a_width);
- bn_select_words(D->d, both_odd & ~v_less_than_u, tmp->d, D->d, a_width);
- // Our loop invariants hold at this point. Additionally, exactly one of |u|
- // and |v| is now even.
- BN_ULONG u_is_even = ~word_is_odd_mask(u->d[0]);
- BN_ULONG v_is_even = ~word_is_odd_mask(v->d[0]);
- assert(u_is_even != v_is_even);
- // Halve the even one and adjust the corresponding coefficient.
- maybe_rshift1_words(u->d, u_is_even, tmp->d, n_width);
- BN_ULONG A_or_B_is_odd =
- word_is_odd_mask(A->d[0]) | word_is_odd_mask(B->d[0]);
- BN_ULONG A_carry =
- maybe_add_words(A->d, A_or_B_is_odd & u_is_even, n->d, tmp->d, n_width);
- BN_ULONG B_carry =
- maybe_add_words(B->d, A_or_B_is_odd & u_is_even, a->d, tmp->d, a_width);
- maybe_rshift1_words_carry(A->d, A_carry, u_is_even, tmp->d, n_width);
- maybe_rshift1_words_carry(B->d, B_carry, u_is_even, tmp->d, a_width);
- maybe_rshift1_words(v->d, v_is_even, tmp->d, n_width);
- BN_ULONG C_or_D_is_odd =
- word_is_odd_mask(C->d[0]) | word_is_odd_mask(D->d[0]);
- BN_ULONG C_carry =
- maybe_add_words(C->d, C_or_D_is_odd & v_is_even, n->d, tmp->d, n_width);
- BN_ULONG D_carry =
- maybe_add_words(D->d, C_or_D_is_odd & v_is_even, a->d, tmp->d, a_width);
- maybe_rshift1_words_carry(C->d, C_carry, v_is_even, tmp->d, n_width);
- maybe_rshift1_words_carry(D->d, D_carry, v_is_even, tmp->d, a_width);
- }
- assert(BN_is_zero(v));
- if (!BN_is_one(u)) {
- *out_no_inverse = 1;
- OPENSSL_PUT_ERROR(BN, BN_R_NO_INVERSE);
- goto err;
- }
- ret = BN_copy(r, A) != NULL;
- err:
- BN_CTX_end(ctx);
- return ret;
- }
- int BN_mod_inverse_odd(BIGNUM *out, int *out_no_inverse, const BIGNUM *a,
- const BIGNUM *n, BN_CTX *ctx) {
- *out_no_inverse = 0;
- if (!BN_is_odd(n)) {
- OPENSSL_PUT_ERROR(BN, BN_R_CALLED_WITH_EVEN_MODULUS);
- return 0;
- }
- if (BN_is_negative(a) || BN_cmp(a, n) >= 0) {
- OPENSSL_PUT_ERROR(BN, BN_R_INPUT_NOT_REDUCED);
- return 0;
- }
- BIGNUM *A, *B, *X, *Y;
- int ret = 0;
- int sign;
- BN_CTX_start(ctx);
- A = BN_CTX_get(ctx);
- B = BN_CTX_get(ctx);
- X = BN_CTX_get(ctx);
- Y = BN_CTX_get(ctx);
- if (Y == NULL) {
- goto err;
- }
- BIGNUM *R = out;
- BN_zero(Y);
- if (!BN_one(X) || BN_copy(B, a) == NULL || BN_copy(A, n) == NULL) {
- goto err;
- }
- A->neg = 0;
- sign = -1;
- // From B = a mod |n|, A = |n| it follows that
- //
- // 0 <= B < A,
- // -sign*X*a == B (mod |n|),
- // sign*Y*a == A (mod |n|).
- // Binary inversion algorithm; requires odd modulus. This is faster than the
- // general algorithm if the modulus is sufficiently small (about 400 .. 500
- // bits on 32-bit systems, but much more on 64-bit systems)
- int shift;
- while (!BN_is_zero(B)) {
- // 0 < B < |n|,
- // 0 < A <= |n|,
- // (1) -sign*X*a == B (mod |n|),
- // (2) sign*Y*a == A (mod |n|)
- // Now divide B by the maximum possible power of two in the integers,
- // and divide X by the same value mod |n|.
- // When we're done, (1) still holds.
- shift = 0;
- while (!BN_is_bit_set(B, shift)) {
- // note that 0 < B
- shift++;
- if (BN_is_odd(X)) {
- if (!BN_uadd(X, X, n)) {
- goto err;
- }
- }
- // now X is even, so we can easily divide it by two
- if (!BN_rshift1(X, X)) {
- goto err;
- }
- }
- if (shift > 0) {
- if (!BN_rshift(B, B, shift)) {
- goto err;
- }
- }
- // Same for A and Y. Afterwards, (2) still holds.
- shift = 0;
- while (!BN_is_bit_set(A, shift)) {
- // note that 0 < A
- shift++;
- if (BN_is_odd(Y)) {
- if (!BN_uadd(Y, Y, n)) {
- goto err;
- }
- }
- // now Y is even
- if (!BN_rshift1(Y, Y)) {
- goto err;
- }
- }
- if (shift > 0) {
- if (!BN_rshift(A, A, shift)) {
- goto err;
- }
- }
- // We still have (1) and (2).
- // Both A and B are odd.
- // The following computations ensure that
- //
- // 0 <= B < |n|,
- // 0 < A < |n|,
- // (1) -sign*X*a == B (mod |n|),
- // (2) sign*Y*a == A (mod |n|),
- //
- // and that either A or B is even in the next iteration.
- if (BN_ucmp(B, A) >= 0) {
- // -sign*(X + Y)*a == B - A (mod |n|)
- if (!BN_uadd(X, X, Y)) {
- goto err;
- }
- // NB: we could use BN_mod_add_quick(X, X, Y, n), but that
- // actually makes the algorithm slower
- if (!BN_usub(B, B, A)) {
- goto err;
- }
- } else {
- // sign*(X + Y)*a == A - B (mod |n|)
- if (!BN_uadd(Y, Y, X)) {
- goto err;
- }
- // as above, BN_mod_add_quick(Y, Y, X, n) would slow things down
- if (!BN_usub(A, A, B)) {
- goto err;
- }
- }
- }
- if (!BN_is_one(A)) {
- *out_no_inverse = 1;
- OPENSSL_PUT_ERROR(BN, BN_R_NO_INVERSE);
- goto err;
- }
- // The while loop (Euclid's algorithm) ends when
- // A == gcd(a,n);
- // we have
- // sign*Y*a == A (mod |n|),
- // where Y is non-negative.
- if (sign < 0) {
- if (!BN_sub(Y, n, Y)) {
- goto err;
- }
- }
- // Now Y*a == A (mod |n|).
- // Y*a == 1 (mod |n|)
- if (!Y->neg && BN_ucmp(Y, n) < 0) {
- if (!BN_copy(R, Y)) {
- goto err;
- }
- } else {
- if (!BN_nnmod(R, Y, n, ctx)) {
- goto err;
- }
- }
- ret = 1;
- err:
- BN_CTX_end(ctx);
- return ret;
- }
- BIGNUM *BN_mod_inverse(BIGNUM *out, const BIGNUM *a, const BIGNUM *n,
- BN_CTX *ctx) {
- BIGNUM *new_out = NULL;
- if (out == NULL) {
- new_out = BN_new();
- if (new_out == NULL) {
- OPENSSL_PUT_ERROR(BN, ERR_R_MALLOC_FAILURE);
- return NULL;
- }
- out = new_out;
- }
- int ok = 0;
- BIGNUM *a_reduced = NULL;
- if (a->neg || BN_ucmp(a, n) >= 0) {
- a_reduced = BN_dup(a);
- if (a_reduced == NULL) {
- goto err;
- }
- if (!BN_nnmod(a_reduced, a_reduced, n, ctx)) {
- goto err;
- }
- a = a_reduced;
- }
- int no_inverse;
- if (!BN_is_odd(n)) {
- if (!bn_mod_inverse_consttime(out, &no_inverse, a, n, ctx)) {
- goto err;
- }
- } else if (!BN_mod_inverse_odd(out, &no_inverse, a, n, ctx)) {
- goto err;
- }
- ok = 1;
- err:
- if (!ok) {
- BN_free(new_out);
- out = NULL;
- }
- BN_free(a_reduced);
- return out;
- }
- int BN_mod_inverse_blinded(BIGNUM *out, int *out_no_inverse, const BIGNUM *a,
- const BN_MONT_CTX *mont, BN_CTX *ctx) {
- *out_no_inverse = 0;
- if (BN_is_negative(a) || BN_cmp(a, &mont->N) >= 0) {
- OPENSSL_PUT_ERROR(BN, BN_R_INPUT_NOT_REDUCED);
- return 0;
- }
- int ret = 0;
- BIGNUM blinding_factor;
- BN_init(&blinding_factor);
- if (!BN_rand_range_ex(&blinding_factor, 1, &mont->N) ||
- !BN_mod_mul_montgomery(out, &blinding_factor, a, mont, ctx) ||
- !BN_mod_inverse_odd(out, out_no_inverse, out, &mont->N, ctx) ||
- !BN_mod_mul_montgomery(out, &blinding_factor, out, mont, ctx)) {
- OPENSSL_PUT_ERROR(BN, ERR_R_BN_LIB);
- goto err;
- }
- ret = 1;
- err:
- BN_free(&blinding_factor);
- return ret;
- }
- int bn_mod_inverse_prime(BIGNUM *out, const BIGNUM *a, const BIGNUM *p,
- BN_CTX *ctx, const BN_MONT_CTX *mont_p) {
- BN_CTX_start(ctx);
- BIGNUM *p_minus_2 = BN_CTX_get(ctx);
- int ok = p_minus_2 != NULL &&
- BN_copy(p_minus_2, p) &&
- BN_sub_word(p_minus_2, 2) &&
- BN_mod_exp_mont(out, a, p_minus_2, p, ctx, mont_p);
- BN_CTX_end(ctx);
- return ok;
- }
- int bn_mod_inverse_secret_prime(BIGNUM *out, const BIGNUM *a, const BIGNUM *p,
- BN_CTX *ctx, const BN_MONT_CTX *mont_p) {
- BN_CTX_start(ctx);
- BIGNUM *p_minus_2 = BN_CTX_get(ctx);
- int ok = p_minus_2 != NULL &&
- BN_copy(p_minus_2, p) &&
- BN_sub_word(p_minus_2, 2) &&
- BN_mod_exp_mont_consttime(out, a, p_minus_2, p, ctx, mont_p);
- BN_CTX_end(ctx);
- return ok;
- }
|