exponentiation.c 37 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356
  1. /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
  2. * All rights reserved.
  3. *
  4. * This package is an SSL implementation written
  5. * by Eric Young (eay@cryptsoft.com).
  6. * The implementation was written so as to conform with Netscapes SSL.
  7. *
  8. * This library is free for commercial and non-commercial use as long as
  9. * the following conditions are aheared to. The following conditions
  10. * apply to all code found in this distribution, be it the RC4, RSA,
  11. * lhash, DES, etc., code; not just the SSL code. The SSL documentation
  12. * included with this distribution is covered by the same copyright terms
  13. * except that the holder is Tim Hudson (tjh@cryptsoft.com).
  14. *
  15. * Copyright remains Eric Young's, and as such any Copyright notices in
  16. * the code are not to be removed.
  17. * If this package is used in a product, Eric Young should be given attribution
  18. * as the author of the parts of the library used.
  19. * This can be in the form of a textual message at program startup or
  20. * in documentation (online or textual) provided with the package.
  21. *
  22. * Redistribution and use in source and binary forms, with or without
  23. * modification, are permitted provided that the following conditions
  24. * are met:
  25. * 1. Redistributions of source code must retain the copyright
  26. * notice, this list of conditions and the following disclaimer.
  27. * 2. Redistributions in binary form must reproduce the above copyright
  28. * notice, this list of conditions and the following disclaimer in the
  29. * documentation and/or other materials provided with the distribution.
  30. * 3. All advertising materials mentioning features or use of this software
  31. * must display the following acknowledgement:
  32. * "This product includes cryptographic software written by
  33. * Eric Young (eay@cryptsoft.com)"
  34. * The word 'cryptographic' can be left out if the rouines from the library
  35. * being used are not cryptographic related :-).
  36. * 4. If you include any Windows specific code (or a derivative thereof) from
  37. * the apps directory (application code) you must include an acknowledgement:
  38. * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
  39. *
  40. * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
  41. * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  42. * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  43. * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
  44. * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  45. * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
  46. * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
  47. * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
  48. * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
  49. * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
  50. * SUCH DAMAGE.
  51. *
  52. * The licence and distribution terms for any publically available version or
  53. * derivative of this code cannot be changed. i.e. this code cannot simply be
  54. * copied and put under another distribution licence
  55. * [including the GNU Public Licence.]
  56. */
  57. /* ====================================================================
  58. * Copyright (c) 1998-2005 The OpenSSL Project. All rights reserved.
  59. *
  60. * Redistribution and use in source and binary forms, with or without
  61. * modification, are permitted provided that the following conditions
  62. * are met:
  63. *
  64. * 1. Redistributions of source code must retain the above copyright
  65. * notice, this list of conditions and the following disclaimer.
  66. *
  67. * 2. Redistributions in binary form must reproduce the above copyright
  68. * notice, this list of conditions and the following disclaimer in
  69. * the documentation and/or other materials provided with the
  70. * distribution.
  71. *
  72. * 3. All advertising materials mentioning features or use of this
  73. * software must display the following acknowledgment:
  74. * "This product includes software developed by the OpenSSL Project
  75. * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
  76. *
  77. * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
  78. * endorse or promote products derived from this software without
  79. * prior written permission. For written permission, please contact
  80. * openssl-core@openssl.org.
  81. *
  82. * 5. Products derived from this software may not be called "OpenSSL"
  83. * nor may "OpenSSL" appear in their names without prior written
  84. * permission of the OpenSSL Project.
  85. *
  86. * 6. Redistributions of any form whatsoever must retain the following
  87. * acknowledgment:
  88. * "This product includes software developed by the OpenSSL Project
  89. * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
  90. *
  91. * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
  92. * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  93. * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
  94. * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
  95. * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  96. * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
  97. * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
  98. * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
  99. * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
  100. * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
  101. * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
  102. * OF THE POSSIBILITY OF SUCH DAMAGE.
  103. * ====================================================================
  104. *
  105. * This product includes cryptographic software written by Eric Young
  106. * (eay@cryptsoft.com). This product includes software written by Tim
  107. * Hudson (tjh@cryptsoft.com). */
  108. #include <openssl/bn.h>
  109. #include <assert.h>
  110. #include <string.h>
  111. #include <openssl/cpu.h>
  112. #include <openssl/err.h>
  113. #include <openssl/mem.h>
  114. #include "internal.h"
  115. #if !defined(OPENSSL_NO_ASM) && defined(OPENSSL_X86_64)
  116. #define OPENSSL_BN_ASM_MONT5
  117. #define RSAZ_ENABLED
  118. #include "rsaz_exp.h"
  119. void bn_mul_mont_gather5(BN_ULONG *rp, const BN_ULONG *ap, const void *table,
  120. const BN_ULONG *np, const BN_ULONG *n0, int num,
  121. int power);
  122. void bn_scatter5(const BN_ULONG *inp, size_t num, void *table, size_t power);
  123. void bn_gather5(BN_ULONG *out, size_t num, void *table, size_t power);
  124. void bn_power5(BN_ULONG *rp, const BN_ULONG *ap, const void *table,
  125. const BN_ULONG *np, const BN_ULONG *n0, int num, int power);
  126. int bn_from_montgomery(BN_ULONG *rp, const BN_ULONG *ap,
  127. const BN_ULONG *not_used, const BN_ULONG *np,
  128. const BN_ULONG *n0, int num);
  129. #endif
  130. int BN_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx) {
  131. int i, bits, ret = 0;
  132. BIGNUM *v, *rr;
  133. BN_CTX_start(ctx);
  134. if (r == a || r == p) {
  135. rr = BN_CTX_get(ctx);
  136. } else {
  137. rr = r;
  138. }
  139. v = BN_CTX_get(ctx);
  140. if (rr == NULL || v == NULL) {
  141. goto err;
  142. }
  143. if (BN_copy(v, a) == NULL) {
  144. goto err;
  145. }
  146. bits = BN_num_bits(p);
  147. if (BN_is_odd(p)) {
  148. if (BN_copy(rr, a) == NULL) {
  149. goto err;
  150. }
  151. } else {
  152. if (!BN_one(rr)) {
  153. goto err;
  154. }
  155. }
  156. for (i = 1; i < bits; i++) {
  157. if (!BN_sqr(v, v, ctx)) {
  158. goto err;
  159. }
  160. if (BN_is_bit_set(p, i)) {
  161. if (!BN_mul(rr, rr, v, ctx)) {
  162. goto err;
  163. }
  164. }
  165. }
  166. if (r != rr && !BN_copy(r, rr)) {
  167. goto err;
  168. }
  169. ret = 1;
  170. err:
  171. BN_CTX_end(ctx);
  172. return ret;
  173. }
  174. typedef struct bn_recp_ctx_st {
  175. BIGNUM N; // the divisor
  176. BIGNUM Nr; // the reciprocal
  177. int num_bits;
  178. int shift;
  179. int flags;
  180. } BN_RECP_CTX;
  181. static void BN_RECP_CTX_init(BN_RECP_CTX *recp) {
  182. BN_init(&recp->N);
  183. BN_init(&recp->Nr);
  184. recp->num_bits = 0;
  185. recp->shift = 0;
  186. recp->flags = 0;
  187. }
  188. static void BN_RECP_CTX_free(BN_RECP_CTX *recp) {
  189. if (recp == NULL) {
  190. return;
  191. }
  192. BN_free(&recp->N);
  193. BN_free(&recp->Nr);
  194. }
  195. static int BN_RECP_CTX_set(BN_RECP_CTX *recp, const BIGNUM *d, BN_CTX *ctx) {
  196. if (!BN_copy(&(recp->N), d)) {
  197. return 0;
  198. }
  199. BN_zero(&recp->Nr);
  200. recp->num_bits = BN_num_bits(d);
  201. recp->shift = 0;
  202. return 1;
  203. }
  204. // len is the expected size of the result We actually calculate with an extra
  205. // word of precision, so we can do faster division if the remainder is not
  206. // required.
  207. // r := 2^len / m
  208. static int BN_reciprocal(BIGNUM *r, const BIGNUM *m, int len, BN_CTX *ctx) {
  209. int ret = -1;
  210. BIGNUM *t;
  211. BN_CTX_start(ctx);
  212. t = BN_CTX_get(ctx);
  213. if (t == NULL) {
  214. goto err;
  215. }
  216. if (!BN_set_bit(t, len)) {
  217. goto err;
  218. }
  219. if (!BN_div(r, NULL, t, m, ctx)) {
  220. goto err;
  221. }
  222. ret = len;
  223. err:
  224. BN_CTX_end(ctx);
  225. return ret;
  226. }
  227. static int BN_div_recp(BIGNUM *dv, BIGNUM *rem, const BIGNUM *m,
  228. BN_RECP_CTX *recp, BN_CTX *ctx) {
  229. int i, j, ret = 0;
  230. BIGNUM *a, *b, *d, *r;
  231. BN_CTX_start(ctx);
  232. a = BN_CTX_get(ctx);
  233. b = BN_CTX_get(ctx);
  234. if (dv != NULL) {
  235. d = dv;
  236. } else {
  237. d = BN_CTX_get(ctx);
  238. }
  239. if (rem != NULL) {
  240. r = rem;
  241. } else {
  242. r = BN_CTX_get(ctx);
  243. }
  244. if (a == NULL || b == NULL || d == NULL || r == NULL) {
  245. goto err;
  246. }
  247. if (BN_ucmp(m, &recp->N) < 0) {
  248. BN_zero(d);
  249. if (!BN_copy(r, m)) {
  250. goto err;
  251. }
  252. BN_CTX_end(ctx);
  253. return 1;
  254. }
  255. // We want the remainder
  256. // Given input of ABCDEF / ab
  257. // we need multiply ABCDEF by 3 digests of the reciprocal of ab
  258. // i := max(BN_num_bits(m), 2*BN_num_bits(N))
  259. i = BN_num_bits(m);
  260. j = recp->num_bits << 1;
  261. if (j > i) {
  262. i = j;
  263. }
  264. // Nr := round(2^i / N)
  265. if (i != recp->shift) {
  266. recp->shift =
  267. BN_reciprocal(&(recp->Nr), &(recp->N), i,
  268. ctx); // BN_reciprocal returns i, or -1 for an error
  269. }
  270. if (recp->shift == -1) {
  271. goto err;
  272. }
  273. // d := |round(round(m / 2^BN_num_bits(N)) * recp->Nr / 2^(i -
  274. // BN_num_bits(N)))|
  275. // = |round(round(m / 2^BN_num_bits(N)) * round(2^i / N) / 2^(i -
  276. // BN_num_bits(N)))|
  277. // <= |(m / 2^BN_num_bits(N)) * (2^i / N) * (2^BN_num_bits(N) / 2^i)|
  278. // = |m/N|
  279. if (!BN_rshift(a, m, recp->num_bits)) {
  280. goto err;
  281. }
  282. if (!BN_mul(b, a, &(recp->Nr), ctx)) {
  283. goto err;
  284. }
  285. if (!BN_rshift(d, b, i - recp->num_bits)) {
  286. goto err;
  287. }
  288. d->neg = 0;
  289. if (!BN_mul(b, &(recp->N), d, ctx)) {
  290. goto err;
  291. }
  292. if (!BN_usub(r, m, b)) {
  293. goto err;
  294. }
  295. r->neg = 0;
  296. j = 0;
  297. while (BN_ucmp(r, &(recp->N)) >= 0) {
  298. if (j++ > 2) {
  299. OPENSSL_PUT_ERROR(BN, BN_R_BAD_RECIPROCAL);
  300. goto err;
  301. }
  302. if (!BN_usub(r, r, &(recp->N))) {
  303. goto err;
  304. }
  305. if (!BN_add_word(d, 1)) {
  306. goto err;
  307. }
  308. }
  309. r->neg = BN_is_zero(r) ? 0 : m->neg;
  310. d->neg = m->neg ^ recp->N.neg;
  311. ret = 1;
  312. err:
  313. BN_CTX_end(ctx);
  314. return ret;
  315. }
  316. static int BN_mod_mul_reciprocal(BIGNUM *r, const BIGNUM *x, const BIGNUM *y,
  317. BN_RECP_CTX *recp, BN_CTX *ctx) {
  318. int ret = 0;
  319. BIGNUM *a;
  320. const BIGNUM *ca;
  321. BN_CTX_start(ctx);
  322. a = BN_CTX_get(ctx);
  323. if (a == NULL) {
  324. goto err;
  325. }
  326. if (y != NULL) {
  327. if (x == y) {
  328. if (!BN_sqr(a, x, ctx)) {
  329. goto err;
  330. }
  331. } else {
  332. if (!BN_mul(a, x, y, ctx)) {
  333. goto err;
  334. }
  335. }
  336. ca = a;
  337. } else {
  338. ca = x; // Just do the mod
  339. }
  340. ret = BN_div_recp(NULL, r, ca, recp, ctx);
  341. err:
  342. BN_CTX_end(ctx);
  343. return ret;
  344. }
  345. // BN_window_bits_for_exponent_size returns sliding window size for mod_exp with
  346. // a |b| bit exponent.
  347. //
  348. // For window size 'w' (w >= 2) and a random 'b' bits exponent, the number of
  349. // multiplications is a constant plus on average
  350. //
  351. // 2^(w-1) + (b-w)/(w+1);
  352. //
  353. // here 2^(w-1) is for precomputing the table (we actually need entries only
  354. // for windows that have the lowest bit set), and (b-w)/(w+1) is an
  355. // approximation for the expected number of w-bit windows, not counting the
  356. // first one.
  357. //
  358. // Thus we should use
  359. //
  360. // w >= 6 if b > 671
  361. // w = 5 if 671 > b > 239
  362. // w = 4 if 239 > b > 79
  363. // w = 3 if 79 > b > 23
  364. // w <= 2 if 23 > b
  365. //
  366. // (with draws in between). Very small exponents are often selected
  367. // with low Hamming weight, so we use w = 1 for b <= 23.
  368. static int BN_window_bits_for_exponent_size(int b) {
  369. if (b > 671) {
  370. return 6;
  371. }
  372. if (b > 239) {
  373. return 5;
  374. }
  375. if (b > 79) {
  376. return 4;
  377. }
  378. if (b > 23) {
  379. return 3;
  380. }
  381. return 1;
  382. }
  383. // TABLE_SIZE is the maximum precomputation table size for *variable* sliding
  384. // windows. This must be 2^(max_window - 1), where max_window is the largest
  385. // value returned from |BN_window_bits_for_exponent_size|.
  386. #define TABLE_SIZE 32
  387. // TABLE_BITS_SMALL is the smallest value returned from
  388. // |BN_window_bits_for_exponent_size| when |b| is at most |BN_BITS2| *
  389. // |BN_SMALL_MAX_WORDS| words.
  390. #define TABLE_BITS_SMALL 5
  391. // TABLE_SIZE_SMALL is the same as |TABLE_SIZE|, but when |b| is at most
  392. // |BN_BITS2| * |BN_SMALL_MAX_WORDS|.
  393. #define TABLE_SIZE_SMALL (1 << (TABLE_BITS_SMALL - 1))
  394. static int mod_exp_recp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
  395. const BIGNUM *m, BN_CTX *ctx) {
  396. int i, j, bits, ret = 0, wstart, window;
  397. int start = 1;
  398. BIGNUM *aa;
  399. // Table of variables obtained from 'ctx'
  400. BIGNUM *val[TABLE_SIZE];
  401. BN_RECP_CTX recp;
  402. bits = BN_num_bits(p);
  403. if (bits == 0) {
  404. // x**0 mod 1 is still zero.
  405. if (BN_is_one(m)) {
  406. BN_zero(r);
  407. return 1;
  408. }
  409. return BN_one(r);
  410. }
  411. BN_CTX_start(ctx);
  412. aa = BN_CTX_get(ctx);
  413. val[0] = BN_CTX_get(ctx);
  414. if (!aa || !val[0]) {
  415. goto err;
  416. }
  417. BN_RECP_CTX_init(&recp);
  418. if (m->neg) {
  419. // ignore sign of 'm'
  420. if (!BN_copy(aa, m)) {
  421. goto err;
  422. }
  423. aa->neg = 0;
  424. if (BN_RECP_CTX_set(&recp, aa, ctx) <= 0) {
  425. goto err;
  426. }
  427. } else {
  428. if (BN_RECP_CTX_set(&recp, m, ctx) <= 0) {
  429. goto err;
  430. }
  431. }
  432. if (!BN_nnmod(val[0], a, m, ctx)) {
  433. goto err; // 1
  434. }
  435. if (BN_is_zero(val[0])) {
  436. BN_zero(r);
  437. ret = 1;
  438. goto err;
  439. }
  440. window = BN_window_bits_for_exponent_size(bits);
  441. if (window > 1) {
  442. if (!BN_mod_mul_reciprocal(aa, val[0], val[0], &recp, ctx)) {
  443. goto err; // 2
  444. }
  445. j = 1 << (window - 1);
  446. for (i = 1; i < j; i++) {
  447. if (((val[i] = BN_CTX_get(ctx)) == NULL) ||
  448. !BN_mod_mul_reciprocal(val[i], val[i - 1], aa, &recp, ctx)) {
  449. goto err;
  450. }
  451. }
  452. }
  453. start = 1; // This is used to avoid multiplication etc
  454. // when there is only the value '1' in the
  455. // buffer.
  456. wstart = bits - 1; // The top bit of the window
  457. if (!BN_one(r)) {
  458. goto err;
  459. }
  460. for (;;) {
  461. int wvalue; // The 'value' of the window
  462. int wend; // The bottom bit of the window
  463. if (!BN_is_bit_set(p, wstart)) {
  464. if (!start) {
  465. if (!BN_mod_mul_reciprocal(r, r, r, &recp, ctx)) {
  466. goto err;
  467. }
  468. }
  469. if (wstart == 0) {
  470. break;
  471. }
  472. wstart--;
  473. continue;
  474. }
  475. // We now have wstart on a 'set' bit, we now need to work out
  476. // how bit a window to do. To do this we need to scan
  477. // forward until the last set bit before the end of the
  478. // window
  479. wvalue = 1;
  480. wend = 0;
  481. for (i = 1; i < window; i++) {
  482. if (wstart - i < 0) {
  483. break;
  484. }
  485. if (BN_is_bit_set(p, wstart - i)) {
  486. wvalue <<= (i - wend);
  487. wvalue |= 1;
  488. wend = i;
  489. }
  490. }
  491. // wend is the size of the current window
  492. j = wend + 1;
  493. // add the 'bytes above'
  494. if (!start) {
  495. for (i = 0; i < j; i++) {
  496. if (!BN_mod_mul_reciprocal(r, r, r, &recp, ctx)) {
  497. goto err;
  498. }
  499. }
  500. }
  501. // wvalue will be an odd number < 2^window
  502. if (!BN_mod_mul_reciprocal(r, r, val[wvalue >> 1], &recp, ctx)) {
  503. goto err;
  504. }
  505. // move the 'window' down further
  506. wstart -= wend + 1;
  507. start = 0;
  508. if (wstart < 0) {
  509. break;
  510. }
  511. }
  512. ret = 1;
  513. err:
  514. BN_CTX_end(ctx);
  515. BN_RECP_CTX_free(&recp);
  516. return ret;
  517. }
  518. int BN_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, const BIGNUM *m,
  519. BN_CTX *ctx) {
  520. if (BN_is_odd(m)) {
  521. return BN_mod_exp_mont(r, a, p, m, ctx, NULL);
  522. }
  523. return mod_exp_recp(r, a, p, m, ctx);
  524. }
  525. int BN_mod_exp_mont(BIGNUM *rr, const BIGNUM *a, const BIGNUM *p,
  526. const BIGNUM *m, BN_CTX *ctx, const BN_MONT_CTX *mont) {
  527. if (!BN_is_odd(m)) {
  528. OPENSSL_PUT_ERROR(BN, BN_R_CALLED_WITH_EVEN_MODULUS);
  529. return 0;
  530. }
  531. int bits = BN_num_bits(p);
  532. if (bits == 0) {
  533. // x**0 mod 1 is still zero.
  534. if (BN_is_one(m)) {
  535. BN_zero(rr);
  536. return 1;
  537. }
  538. return BN_one(rr);
  539. }
  540. int ret = 0;
  541. BIGNUM *val[TABLE_SIZE];
  542. BN_MONT_CTX *new_mont = NULL;
  543. BN_CTX_start(ctx);
  544. BIGNUM *d = BN_CTX_get(ctx);
  545. BIGNUM *r = BN_CTX_get(ctx);
  546. val[0] = BN_CTX_get(ctx);
  547. if (!d || !r || !val[0]) {
  548. goto err;
  549. }
  550. // Allocate a montgomery context if it was not supplied by the caller.
  551. if (mont == NULL) {
  552. new_mont = BN_MONT_CTX_new_for_modulus(m, ctx);
  553. if (new_mont == NULL) {
  554. goto err;
  555. }
  556. mont = new_mont;
  557. }
  558. const BIGNUM *aa;
  559. if (a->neg || BN_ucmp(a, m) >= 0) {
  560. if (!BN_nnmod(val[0], a, m, ctx)) {
  561. goto err;
  562. }
  563. aa = val[0];
  564. } else {
  565. aa = a;
  566. }
  567. if (BN_is_zero(aa)) {
  568. BN_zero(rr);
  569. ret = 1;
  570. goto err;
  571. }
  572. // We exponentiate by looking at sliding windows of the exponent and
  573. // precomputing powers of |aa|. Windows may be shifted so they always end on a
  574. // set bit, so only precompute odd powers. We compute val[i] = aa^(2*i + 1)
  575. // for i = 0 to 2^(window-1), all in Montgomery form.
  576. int window = BN_window_bits_for_exponent_size(bits);
  577. if (!BN_to_montgomery(val[0], aa, mont, ctx)) {
  578. goto err;
  579. }
  580. if (window > 1) {
  581. if (!BN_mod_mul_montgomery(d, val[0], val[0], mont, ctx)) {
  582. goto err;
  583. }
  584. for (int i = 1; i < 1 << (window - 1); i++) {
  585. val[i] = BN_CTX_get(ctx);
  586. if (val[i] == NULL ||
  587. !BN_mod_mul_montgomery(val[i], val[i - 1], d, mont, ctx)) {
  588. goto err;
  589. }
  590. }
  591. }
  592. if (!bn_one_to_montgomery(r, mont, ctx)) {
  593. goto err;
  594. }
  595. int r_is_one = 1;
  596. int wstart = bits - 1; // The top bit of the window.
  597. for (;;) {
  598. if (!BN_is_bit_set(p, wstart)) {
  599. if (!r_is_one && !BN_mod_mul_montgomery(r, r, r, mont, ctx)) {
  600. goto err;
  601. }
  602. if (wstart == 0) {
  603. break;
  604. }
  605. wstart--;
  606. continue;
  607. }
  608. // We now have wstart on a set bit. Find the largest window we can use.
  609. int wvalue = 1;
  610. int wsize = 0;
  611. for (int i = 1; i < window && i <= wstart; i++) {
  612. if (BN_is_bit_set(p, wstart - i)) {
  613. wvalue <<= (i - wsize);
  614. wvalue |= 1;
  615. wsize = i;
  616. }
  617. }
  618. // Shift |r| to the end of the window.
  619. if (!r_is_one) {
  620. for (int i = 0; i < wsize + 1; i++) {
  621. if (!BN_mod_mul_montgomery(r, r, r, mont, ctx)) {
  622. goto err;
  623. }
  624. }
  625. }
  626. assert(wvalue & 1);
  627. assert(wvalue < (1 << window));
  628. if (!BN_mod_mul_montgomery(r, r, val[wvalue >> 1], mont, ctx)) {
  629. goto err;
  630. }
  631. r_is_one = 0;
  632. if (wstart == wsize) {
  633. break;
  634. }
  635. wstart -= wsize + 1;
  636. }
  637. if (!BN_from_montgomery(rr, r, mont, ctx)) {
  638. goto err;
  639. }
  640. ret = 1;
  641. err:
  642. BN_MONT_CTX_free(new_mont);
  643. BN_CTX_end(ctx);
  644. return ret;
  645. }
  646. int bn_mod_exp_mont_small(BN_ULONG *r, size_t num_r, const BN_ULONG *a,
  647. size_t num_a, const BN_ULONG *p, size_t num_p,
  648. const BN_MONT_CTX *mont) {
  649. size_t num_n = mont->N.width;
  650. if (num_n != num_a || num_n != num_r || num_n > BN_SMALL_MAX_WORDS) {
  651. OPENSSL_PUT_ERROR(BN, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
  652. return 0;
  653. }
  654. if (!BN_is_odd(&mont->N)) {
  655. OPENSSL_PUT_ERROR(BN, BN_R_CALLED_WITH_EVEN_MODULUS);
  656. return 0;
  657. }
  658. unsigned bits = 0;
  659. if (num_p != 0) {
  660. bits = BN_num_bits_word(p[num_p - 1]) + (num_p - 1) * BN_BITS2;
  661. }
  662. if (bits == 0) {
  663. OPENSSL_memset(r, 0, num_r * sizeof(BN_ULONG));
  664. if (!BN_is_one(&mont->N)) {
  665. r[0] = 1;
  666. }
  667. return 1;
  668. }
  669. // We exponentiate by looking at sliding windows of the exponent and
  670. // precomputing powers of |a|. Windows may be shifted so they always end on a
  671. // set bit, so only precompute odd powers. We compute val[i] = a^(2*i + 1) for
  672. // i = 0 to 2^(window-1), all in Montgomery form.
  673. unsigned window = BN_window_bits_for_exponent_size(bits);
  674. if (window > TABLE_BITS_SMALL) {
  675. window = TABLE_BITS_SMALL; // Tolerate excessively large |p|.
  676. }
  677. int ret = 0;
  678. BN_ULONG val[TABLE_SIZE_SMALL][BN_SMALL_MAX_WORDS];
  679. OPENSSL_memcpy(val[0], a, num_n * sizeof(BN_ULONG));
  680. if (window > 1) {
  681. BN_ULONG d[BN_SMALL_MAX_WORDS];
  682. if (!bn_mod_mul_montgomery_small(d, num_n, val[0], num_n, val[0], num_n,
  683. mont)) {
  684. goto err;
  685. }
  686. for (unsigned i = 1; i < 1u << (window - 1); i++) {
  687. if (!bn_mod_mul_montgomery_small(val[i], num_n, val[i - 1], num_n, d,
  688. num_n, mont)) {
  689. goto err;
  690. }
  691. }
  692. }
  693. if (!bn_one_to_montgomery_small(r, num_r, mont)) {
  694. goto err;
  695. }
  696. int r_is_one = 1;
  697. unsigned wstart = bits - 1; // The top bit of the window.
  698. for (;;) {
  699. if (!bn_is_bit_set_words(p, num_p, wstart)) {
  700. if (!r_is_one &&
  701. !bn_mod_mul_montgomery_small(r, num_r, r, num_r, r, num_r, mont)) {
  702. goto err;
  703. }
  704. if (wstart == 0) {
  705. break;
  706. }
  707. wstart--;
  708. continue;
  709. }
  710. // We now have wstart on a set bit. Find the largest window we can use.
  711. unsigned wvalue = 1;
  712. unsigned wsize = 0;
  713. for (unsigned i = 1; i < window && i <= wstart; i++) {
  714. if (bn_is_bit_set_words(p, num_p, wstart - i)) {
  715. wvalue <<= (i - wsize);
  716. wvalue |= 1;
  717. wsize = i;
  718. }
  719. }
  720. // Shift |r| to the end of the window.
  721. if (!r_is_one) {
  722. for (unsigned i = 0; i < wsize + 1; i++) {
  723. if (!bn_mod_mul_montgomery_small(r, num_r, r, num_r, r, num_r, mont)) {
  724. goto err;
  725. }
  726. }
  727. }
  728. assert(wvalue & 1);
  729. assert(wvalue < (1u << window));
  730. if (!bn_mod_mul_montgomery_small(r, num_r, r, num_r, val[wvalue >> 1],
  731. num_n, mont)) {
  732. goto err;
  733. }
  734. r_is_one = 0;
  735. if (wstart == wsize) {
  736. break;
  737. }
  738. wstart -= wsize + 1;
  739. }
  740. ret = 1;
  741. err:
  742. OPENSSL_cleanse(val, sizeof(val));
  743. return ret;
  744. }
  745. int bn_mod_inverse_prime_mont_small(BN_ULONG *r, size_t num_r,
  746. const BN_ULONG *a, size_t num_a,
  747. const BN_MONT_CTX *mont) {
  748. const BN_ULONG *p = mont->N.d;
  749. size_t num_p = mont->N.width;
  750. if (num_p > BN_SMALL_MAX_WORDS || num_p == 0) {
  751. OPENSSL_PUT_ERROR(BN, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
  752. return 0;
  753. }
  754. // Per Fermat's Little Theorem, a^-1 = a^(p-2) (mod p) for p prime.
  755. BN_ULONG p_minus_two[BN_SMALL_MAX_WORDS];
  756. OPENSSL_memcpy(p_minus_two, p, num_p * sizeof(BN_ULONG));
  757. if (p_minus_two[0] >= 2) {
  758. p_minus_two[0] -= 2;
  759. } else {
  760. p_minus_two[0] -= 2;
  761. for (size_t i = 1; i < num_p; i++) {
  762. if (p_minus_two[i]-- != 0) {
  763. break;
  764. }
  765. }
  766. }
  767. return bn_mod_exp_mont_small(r, num_r, a, num_a, p_minus_two, num_p, mont);
  768. }
  769. // |BN_mod_exp_mont_consttime| stores the precomputed powers in a specific
  770. // layout so that accessing any of these table values shows the same access
  771. // pattern as far as cache lines are concerned. The following functions are
  772. // used to transfer a BIGNUM from/to that table.
  773. static void copy_to_prebuf(const BIGNUM *b, int top, unsigned char *buf,
  774. int idx, int window) {
  775. int i, j;
  776. const int width = 1 << window;
  777. BN_ULONG *table = (BN_ULONG *) buf;
  778. if (top > b->width) {
  779. top = b->width; // this works because 'buf' is explicitly zeroed
  780. }
  781. for (i = 0, j = idx; i < top; i++, j += width) {
  782. table[j] = b->d[i];
  783. }
  784. }
  785. static int copy_from_prebuf(BIGNUM *b, int top, unsigned char *buf, int idx,
  786. int window) {
  787. int i, j;
  788. const int width = 1 << window;
  789. volatile BN_ULONG *table = (volatile BN_ULONG *)buf;
  790. if (!bn_wexpand(b, top)) {
  791. return 0;
  792. }
  793. if (window <= 3) {
  794. for (i = 0; i < top; i++, table += width) {
  795. BN_ULONG acc = 0;
  796. for (j = 0; j < width; j++) {
  797. acc |= table[j] & ((BN_ULONG)0 - (constant_time_eq_int(j, idx) & 1));
  798. }
  799. b->d[i] = acc;
  800. }
  801. } else {
  802. int xstride = 1 << (window - 2);
  803. BN_ULONG y0, y1, y2, y3;
  804. i = idx >> (window - 2); // equivalent of idx / xstride
  805. idx &= xstride - 1; // equivalent of idx % xstride
  806. y0 = (BN_ULONG)0 - (constant_time_eq_int(i, 0) & 1);
  807. y1 = (BN_ULONG)0 - (constant_time_eq_int(i, 1) & 1);
  808. y2 = (BN_ULONG)0 - (constant_time_eq_int(i, 2) & 1);
  809. y3 = (BN_ULONG)0 - (constant_time_eq_int(i, 3) & 1);
  810. for (i = 0; i < top; i++, table += width) {
  811. BN_ULONG acc = 0;
  812. for (j = 0; j < xstride; j++) {
  813. acc |= ((table[j + 0 * xstride] & y0) | (table[j + 1 * xstride] & y1) |
  814. (table[j + 2 * xstride] & y2) | (table[j + 3 * xstride] & y3)) &
  815. ((BN_ULONG)0 - (constant_time_eq_int(j, idx) & 1));
  816. }
  817. b->d[i] = acc;
  818. }
  819. }
  820. b->width = top;
  821. return 1;
  822. }
  823. // BN_mod_exp_mont_conttime is based on the assumption that the L1 data cache
  824. // line width of the target processor is at least the following value.
  825. #define MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH (64)
  826. #define MOD_EXP_CTIME_MIN_CACHE_LINE_MASK \
  827. (MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH - 1)
  828. // Window sizes optimized for fixed window size modular exponentiation
  829. // algorithm (BN_mod_exp_mont_consttime).
  830. //
  831. // To achieve the security goals of BN_mode_exp_mont_consttime, the maximum
  832. // size of the window must not exceed
  833. // log_2(MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH).
  834. //
  835. // Window size thresholds are defined for cache line sizes of 32 and 64, cache
  836. // line sizes where log_2(32)=5 and log_2(64)=6 respectively. A window size of
  837. // 7 should only be used on processors that have a 128 byte or greater cache
  838. // line size.
  839. #if MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH == 64
  840. #define BN_window_bits_for_ctime_exponent_size(b) \
  841. ((b) > 937 ? 6 : (b) > 306 ? 5 : (b) > 89 ? 4 : (b) > 22 ? 3 : 1)
  842. #define BN_MAX_WINDOW_BITS_FOR_CTIME_EXPONENT_SIZE (6)
  843. #elif MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH == 32
  844. #define BN_window_bits_for_ctime_exponent_size(b) \
  845. ((b) > 306 ? 5 : (b) > 89 ? 4 : (b) > 22 ? 3 : 1)
  846. #define BN_MAX_WINDOW_BITS_FOR_CTIME_EXPONENT_SIZE (5)
  847. #endif
  848. // Given a pointer value, compute the next address that is a cache line
  849. // multiple.
  850. #define MOD_EXP_CTIME_ALIGN(x_) \
  851. ((unsigned char *)(x_) + \
  852. (MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH - \
  853. (((size_t)(x_)) & (MOD_EXP_CTIME_MIN_CACHE_LINE_MASK))))
  854. // This variant of BN_mod_exp_mont() uses fixed windows and the special
  855. // precomputation memory layout to limit data-dependency to a minimum
  856. // to protect secret exponents (cf. the hyper-threading timing attacks
  857. // pointed out by Colin Percival,
  858. // http://www.daemonology.net/hyperthreading-considered-harmful/)
  859. int BN_mod_exp_mont_consttime(BIGNUM *rr, const BIGNUM *a, const BIGNUM *p,
  860. const BIGNUM *m, BN_CTX *ctx,
  861. const BN_MONT_CTX *mont) {
  862. int i, ret = 0, window, wvalue;
  863. BN_MONT_CTX *new_mont = NULL;
  864. int numPowers;
  865. unsigned char *powerbufFree = NULL;
  866. int powerbufLen = 0;
  867. unsigned char *powerbuf = NULL;
  868. BIGNUM tmp, am;
  869. BIGNUM *new_a = NULL;
  870. if (!BN_is_odd(m)) {
  871. OPENSSL_PUT_ERROR(BN, BN_R_CALLED_WITH_EVEN_MODULUS);
  872. return 0;
  873. }
  874. // Use all bits stored in |p|, rather than |BN_num_bits|, so we do not leak
  875. // whether the top bits are zero.
  876. int max_bits = p->width * BN_BITS2;
  877. int bits = max_bits;
  878. if (bits == 0) {
  879. // x**0 mod 1 is still zero.
  880. if (BN_is_one(m)) {
  881. BN_zero(rr);
  882. return 1;
  883. }
  884. return BN_one(rr);
  885. }
  886. // Allocate a montgomery context if it was not supplied by the caller.
  887. if (mont == NULL) {
  888. new_mont = BN_MONT_CTX_new_for_modulus(m, ctx);
  889. if (new_mont == NULL) {
  890. goto err;
  891. }
  892. mont = new_mont;
  893. }
  894. // Use the width in |mont->N|, rather than the copy in |m|. The assembly
  895. // implementation assumes it can use |top| to size R.
  896. int top = mont->N.width;
  897. if (a->neg || BN_ucmp(a, m) >= 0) {
  898. new_a = BN_new();
  899. if (new_a == NULL ||
  900. !BN_nnmod(new_a, a, m, ctx)) {
  901. goto err;
  902. }
  903. a = new_a;
  904. }
  905. #ifdef RSAZ_ENABLED
  906. // If the size of the operands allow it, perform the optimized
  907. // RSAZ exponentiation. For further information see
  908. // crypto/bn/rsaz_exp.c and accompanying assembly modules.
  909. if ((16 == a->width) && (16 == p->width) && (BN_num_bits(m) == 1024) &&
  910. rsaz_avx2_eligible()) {
  911. if (!bn_wexpand(rr, 16)) {
  912. goto err;
  913. }
  914. RSAZ_1024_mod_exp_avx2(rr->d, a->d, p->d, m->d, mont->RR.d, mont->n0[0]);
  915. rr->width = 16;
  916. rr->neg = 0;
  917. ret = 1;
  918. goto err;
  919. }
  920. #endif
  921. // Get the window size to use with size of p.
  922. window = BN_window_bits_for_ctime_exponent_size(bits);
  923. #if defined(OPENSSL_BN_ASM_MONT5)
  924. if (window >= 5) {
  925. window = 5; // ~5% improvement for RSA2048 sign, and even for RSA4096
  926. // reserve space for mont->N.d[] copy
  927. powerbufLen += top * sizeof(mont->N.d[0]);
  928. }
  929. #endif
  930. // Allocate a buffer large enough to hold all of the pre-computed
  931. // powers of am, am itself and tmp.
  932. numPowers = 1 << window;
  933. powerbufLen +=
  934. sizeof(m->d[0]) *
  935. (top * numPowers + ((2 * top) > numPowers ? (2 * top) : numPowers));
  936. #ifdef alloca
  937. if (powerbufLen < 3072) {
  938. powerbufFree = alloca(powerbufLen + MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH);
  939. } else
  940. #endif
  941. {
  942. if ((powerbufFree = OPENSSL_malloc(
  943. powerbufLen + MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH)) == NULL) {
  944. goto err;
  945. }
  946. }
  947. powerbuf = MOD_EXP_CTIME_ALIGN(powerbufFree);
  948. OPENSSL_memset(powerbuf, 0, powerbufLen);
  949. #ifdef alloca
  950. if (powerbufLen < 3072) {
  951. powerbufFree = NULL;
  952. }
  953. #endif
  954. // lay down tmp and am right after powers table
  955. tmp.d = (BN_ULONG *)(powerbuf + sizeof(m->d[0]) * top * numPowers);
  956. am.d = tmp.d + top;
  957. tmp.width = am.width = 0;
  958. tmp.dmax = am.dmax = top;
  959. tmp.neg = am.neg = 0;
  960. tmp.flags = am.flags = BN_FLG_STATIC_DATA;
  961. if (!bn_one_to_montgomery(&tmp, mont, ctx)) {
  962. goto err;
  963. }
  964. // prepare a^1 in Montgomery domain
  965. assert(!a->neg);
  966. assert(BN_ucmp(a, m) < 0);
  967. if (!BN_to_montgomery(&am, a, mont, ctx)) {
  968. goto err;
  969. }
  970. #if defined(OPENSSL_BN_ASM_MONT5)
  971. // This optimization uses ideas from http://eprint.iacr.org/2011/239,
  972. // specifically optimization of cache-timing attack countermeasures
  973. // and pre-computation optimization.
  974. // Dedicated window==4 case improves 512-bit RSA sign by ~15%, but as
  975. // 512-bit RSA is hardly relevant, we omit it to spare size...
  976. if (window == 5 && top > 1) {
  977. const BN_ULONG *n0 = mont->n0;
  978. BN_ULONG *np;
  979. // BN_to_montgomery can contaminate words above .top
  980. // [in BN_DEBUG[_DEBUG] build]...
  981. for (i = am.width; i < top; i++) {
  982. am.d[i] = 0;
  983. }
  984. for (i = tmp.width; i < top; i++) {
  985. tmp.d[i] = 0;
  986. }
  987. // copy mont->N.d[] to improve cache locality
  988. for (np = am.d + top, i = 0; i < top; i++) {
  989. np[i] = mont->N.d[i];
  990. }
  991. bn_scatter5(tmp.d, top, powerbuf, 0);
  992. bn_scatter5(am.d, am.width, powerbuf, 1);
  993. bn_mul_mont(tmp.d, am.d, am.d, np, n0, top);
  994. bn_scatter5(tmp.d, top, powerbuf, 2);
  995. // same as above, but uses squaring for 1/2 of operations
  996. for (i = 4; i < 32; i *= 2) {
  997. bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top);
  998. bn_scatter5(tmp.d, top, powerbuf, i);
  999. }
  1000. for (i = 3; i < 8; i += 2) {
  1001. int j;
  1002. bn_mul_mont_gather5(tmp.d, am.d, powerbuf, np, n0, top, i - 1);
  1003. bn_scatter5(tmp.d, top, powerbuf, i);
  1004. for (j = 2 * i; j < 32; j *= 2) {
  1005. bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top);
  1006. bn_scatter5(tmp.d, top, powerbuf, j);
  1007. }
  1008. }
  1009. for (; i < 16; i += 2) {
  1010. bn_mul_mont_gather5(tmp.d, am.d, powerbuf, np, n0, top, i - 1);
  1011. bn_scatter5(tmp.d, top, powerbuf, i);
  1012. bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top);
  1013. bn_scatter5(tmp.d, top, powerbuf, 2 * i);
  1014. }
  1015. for (; i < 32; i += 2) {
  1016. bn_mul_mont_gather5(tmp.d, am.d, powerbuf, np, n0, top, i - 1);
  1017. bn_scatter5(tmp.d, top, powerbuf, i);
  1018. }
  1019. bits--;
  1020. for (wvalue = 0, i = bits % 5; i >= 0; i--, bits--) {
  1021. wvalue = (wvalue << 1) + BN_is_bit_set(p, bits);
  1022. }
  1023. bn_gather5(tmp.d, top, powerbuf, wvalue);
  1024. // At this point |bits| is 4 mod 5 and at least -1. (|bits| is the first bit
  1025. // that has not been read yet.)
  1026. assert(bits >= -1 && (bits == -1 || bits % 5 == 4));
  1027. // Scan the exponent one window at a time starting from the most
  1028. // significant bits.
  1029. if (top & 7) {
  1030. while (bits >= 0) {
  1031. for (wvalue = 0, i = 0; i < 5; i++, bits--) {
  1032. wvalue = (wvalue << 1) + BN_is_bit_set(p, bits);
  1033. }
  1034. bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top);
  1035. bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top);
  1036. bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top);
  1037. bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top);
  1038. bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top);
  1039. bn_mul_mont_gather5(tmp.d, tmp.d, powerbuf, np, n0, top, wvalue);
  1040. }
  1041. } else {
  1042. const uint8_t *p_bytes = (const uint8_t *)p->d;
  1043. assert(bits < max_bits);
  1044. // |p = 0| has been handled as a special case, so |max_bits| is at least
  1045. // one word.
  1046. assert(max_bits >= 64);
  1047. // If the first bit to be read lands in the last byte, unroll the first
  1048. // iteration to avoid reading past the bounds of |p->d|. (After the first
  1049. // iteration, we are guaranteed to be past the last byte.) Note |bits|
  1050. // here is the top bit, inclusive.
  1051. if (bits - 4 >= max_bits - 8) {
  1052. // Read five bits from |bits-4| through |bits|, inclusive.
  1053. wvalue = p_bytes[p->width * BN_BYTES - 1];
  1054. wvalue >>= (bits - 4) & 7;
  1055. wvalue &= 0x1f;
  1056. bits -= 5;
  1057. bn_power5(tmp.d, tmp.d, powerbuf, np, n0, top, wvalue);
  1058. }
  1059. while (bits >= 0) {
  1060. // Read five bits from |bits-4| through |bits|, inclusive.
  1061. int first_bit = bits - 4;
  1062. uint16_t val;
  1063. OPENSSL_memcpy(&val, p_bytes + (first_bit >> 3), sizeof(val));
  1064. val >>= first_bit & 7;
  1065. val &= 0x1f;
  1066. bits -= 5;
  1067. bn_power5(tmp.d, tmp.d, powerbuf, np, n0, top, val);
  1068. }
  1069. }
  1070. ret = bn_from_montgomery(tmp.d, tmp.d, NULL, np, n0, top);
  1071. tmp.width = top;
  1072. if (ret) {
  1073. if (!BN_copy(rr, &tmp)) {
  1074. ret = 0;
  1075. }
  1076. goto err; // non-zero ret means it's not error
  1077. }
  1078. } else
  1079. #endif
  1080. {
  1081. copy_to_prebuf(&tmp, top, powerbuf, 0, window);
  1082. copy_to_prebuf(&am, top, powerbuf, 1, window);
  1083. // If the window size is greater than 1, then calculate
  1084. // val[i=2..2^winsize-1]. Powers are computed as a*a^(i-1)
  1085. // (even powers could instead be computed as (a^(i/2))^2
  1086. // to use the slight performance advantage of sqr over mul).
  1087. if (window > 1) {
  1088. if (!BN_mod_mul_montgomery(&tmp, &am, &am, mont, ctx)) {
  1089. goto err;
  1090. }
  1091. copy_to_prebuf(&tmp, top, powerbuf, 2, window);
  1092. for (i = 3; i < numPowers; i++) {
  1093. // Calculate a^i = a^(i-1) * a
  1094. if (!BN_mod_mul_montgomery(&tmp, &am, &tmp, mont, ctx)) {
  1095. goto err;
  1096. }
  1097. copy_to_prebuf(&tmp, top, powerbuf, i, window);
  1098. }
  1099. }
  1100. bits--;
  1101. for (wvalue = 0, i = bits % window; i >= 0; i--, bits--) {
  1102. wvalue = (wvalue << 1) + BN_is_bit_set(p, bits);
  1103. }
  1104. if (!copy_from_prebuf(&tmp, top, powerbuf, wvalue, window)) {
  1105. goto err;
  1106. }
  1107. // Scan the exponent one window at a time starting from the most
  1108. // significant bits.
  1109. while (bits >= 0) {
  1110. wvalue = 0; // The 'value' of the window
  1111. // Scan the window, squaring the result as we go
  1112. for (i = 0; i < window; i++, bits--) {
  1113. if (!BN_mod_mul_montgomery(&tmp, &tmp, &tmp, mont, ctx)) {
  1114. goto err;
  1115. }
  1116. wvalue = (wvalue << 1) + BN_is_bit_set(p, bits);
  1117. }
  1118. // Fetch the appropriate pre-computed value from the pre-buf
  1119. if (!copy_from_prebuf(&am, top, powerbuf, wvalue, window)) {
  1120. goto err;
  1121. }
  1122. // Multiply the result into the intermediate result
  1123. if (!BN_mod_mul_montgomery(&tmp, &tmp, &am, mont, ctx)) {
  1124. goto err;
  1125. }
  1126. }
  1127. }
  1128. // Convert the final result from montgomery to standard format
  1129. if (!BN_from_montgomery(rr, &tmp, mont, ctx)) {
  1130. goto err;
  1131. }
  1132. ret = 1;
  1133. err:
  1134. BN_MONT_CTX_free(new_mont);
  1135. BN_clear_free(new_a);
  1136. OPENSSL_free(powerbufFree);
  1137. return (ret);
  1138. }
  1139. int BN_mod_exp_mont_word(BIGNUM *rr, BN_ULONG a, const BIGNUM *p,
  1140. const BIGNUM *m, BN_CTX *ctx,
  1141. const BN_MONT_CTX *mont) {
  1142. BIGNUM a_bignum;
  1143. BN_init(&a_bignum);
  1144. int ret = 0;
  1145. if (!BN_set_word(&a_bignum, a)) {
  1146. OPENSSL_PUT_ERROR(BN, ERR_R_INTERNAL_ERROR);
  1147. goto err;
  1148. }
  1149. ret = BN_mod_exp_mont(rr, &a_bignum, p, m, ctx, mont);
  1150. err:
  1151. BN_free(&a_bignum);
  1152. return ret;
  1153. }
  1154. #define TABLE_SIZE 32
  1155. int BN_mod_exp2_mont(BIGNUM *rr, const BIGNUM *a1, const BIGNUM *p1,
  1156. const BIGNUM *a2, const BIGNUM *p2, const BIGNUM *m,
  1157. BN_CTX *ctx, const BN_MONT_CTX *mont) {
  1158. BIGNUM tmp;
  1159. BN_init(&tmp);
  1160. int ret = 0;
  1161. BN_MONT_CTX *new_mont = NULL;
  1162. // Allocate a montgomery context if it was not supplied by the caller.
  1163. if (mont == NULL) {
  1164. new_mont = BN_MONT_CTX_new_for_modulus(m, ctx);
  1165. if (new_mont == NULL) {
  1166. goto err;
  1167. }
  1168. mont = new_mont;
  1169. }
  1170. // BN_mod_mul_montgomery removes one Montgomery factor, so passing one
  1171. // Montgomery-encoded and one non-Montgomery-encoded value gives a
  1172. // non-Montgomery-encoded result.
  1173. if (!BN_mod_exp_mont(rr, a1, p1, m, ctx, mont) ||
  1174. !BN_mod_exp_mont(&tmp, a2, p2, m, ctx, mont) ||
  1175. !BN_to_montgomery(rr, rr, mont, ctx) ||
  1176. !BN_mod_mul_montgomery(rr, rr, &tmp, mont, ctx)) {
  1177. goto err;
  1178. }
  1179. ret = 1;
  1180. err:
  1181. BN_MONT_CTX_free(new_mont);
  1182. BN_free(&tmp);
  1183. return ret;
  1184. }