| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356 |
- /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
- * All rights reserved.
- *
- * This package is an SSL implementation written
- * by Eric Young (eay@cryptsoft.com).
- * The implementation was written so as to conform with Netscapes SSL.
- *
- * This library is free for commercial and non-commercial use as long as
- * the following conditions are aheared to. The following conditions
- * apply to all code found in this distribution, be it the RC4, RSA,
- * lhash, DES, etc., code; not just the SSL code. The SSL documentation
- * included with this distribution is covered by the same copyright terms
- * except that the holder is Tim Hudson (tjh@cryptsoft.com).
- *
- * Copyright remains Eric Young's, and as such any Copyright notices in
- * the code are not to be removed.
- * If this package is used in a product, Eric Young should be given attribution
- * as the author of the parts of the library used.
- * This can be in the form of a textual message at program startup or
- * in documentation (online or textual) provided with the package.
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions
- * are met:
- * 1. Redistributions of source code must retain the copyright
- * notice, this list of conditions and the following disclaimer.
- * 2. Redistributions in binary form must reproduce the above copyright
- * notice, this list of conditions and the following disclaimer in the
- * documentation and/or other materials provided with the distribution.
- * 3. All advertising materials mentioning features or use of this software
- * must display the following acknowledgement:
- * "This product includes cryptographic software written by
- * Eric Young (eay@cryptsoft.com)"
- * The word 'cryptographic' can be left out if the rouines from the library
- * being used are not cryptographic related :-).
- * 4. If you include any Windows specific code (or a derivative thereof) from
- * the apps directory (application code) you must include an acknowledgement:
- * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
- *
- * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
- * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
- * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
- * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
- * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
- * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
- * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
- * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
- * SUCH DAMAGE.
- *
- * The licence and distribution terms for any publically available version or
- * derivative of this code cannot be changed. i.e. this code cannot simply be
- * copied and put under another distribution licence
- * [including the GNU Public Licence.]
- */
- /* ====================================================================
- * Copyright (c) 1998-2005 The OpenSSL Project. All rights reserved.
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions
- * are met:
- *
- * 1. Redistributions of source code must retain the above copyright
- * notice, this list of conditions and the following disclaimer.
- *
- * 2. Redistributions in binary form must reproduce the above copyright
- * notice, this list of conditions and the following disclaimer in
- * the documentation and/or other materials provided with the
- * distribution.
- *
- * 3. All advertising materials mentioning features or use of this
- * software must display the following acknowledgment:
- * "This product includes software developed by the OpenSSL Project
- * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
- *
- * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
- * endorse or promote products derived from this software without
- * prior written permission. For written permission, please contact
- * openssl-core@openssl.org.
- *
- * 5. Products derived from this software may not be called "OpenSSL"
- * nor may "OpenSSL" appear in their names without prior written
- * permission of the OpenSSL Project.
- *
- * 6. Redistributions of any form whatsoever must retain the following
- * acknowledgment:
- * "This product includes software developed by the OpenSSL Project
- * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
- *
- * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
- * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
- * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
- * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
- * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
- * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
- * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
- * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
- * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
- * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
- * OF THE POSSIBILITY OF SUCH DAMAGE.
- * ====================================================================
- *
- * This product includes cryptographic software written by Eric Young
- * (eay@cryptsoft.com). This product includes software written by Tim
- * Hudson (tjh@cryptsoft.com). */
- #include <openssl/bn.h>
- #include <assert.h>
- #include <string.h>
- #include <openssl/cpu.h>
- #include <openssl/err.h>
- #include <openssl/mem.h>
- #include "internal.h"
- #if !defined(OPENSSL_NO_ASM) && defined(OPENSSL_X86_64)
- #define OPENSSL_BN_ASM_MONT5
- #define RSAZ_ENABLED
- #include "rsaz_exp.h"
- void bn_mul_mont_gather5(BN_ULONG *rp, const BN_ULONG *ap, const void *table,
- const BN_ULONG *np, const BN_ULONG *n0, int num,
- int power);
- void bn_scatter5(const BN_ULONG *inp, size_t num, void *table, size_t power);
- void bn_gather5(BN_ULONG *out, size_t num, void *table, size_t power);
- void bn_power5(BN_ULONG *rp, const BN_ULONG *ap, const void *table,
- const BN_ULONG *np, const BN_ULONG *n0, int num, int power);
- int bn_from_montgomery(BN_ULONG *rp, const BN_ULONG *ap,
- const BN_ULONG *not_used, const BN_ULONG *np,
- const BN_ULONG *n0, int num);
- #endif
- int BN_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx) {
- int i, bits, ret = 0;
- BIGNUM *v, *rr;
- BN_CTX_start(ctx);
- if (r == a || r == p) {
- rr = BN_CTX_get(ctx);
- } else {
- rr = r;
- }
- v = BN_CTX_get(ctx);
- if (rr == NULL || v == NULL) {
- goto err;
- }
- if (BN_copy(v, a) == NULL) {
- goto err;
- }
- bits = BN_num_bits(p);
- if (BN_is_odd(p)) {
- if (BN_copy(rr, a) == NULL) {
- goto err;
- }
- } else {
- if (!BN_one(rr)) {
- goto err;
- }
- }
- for (i = 1; i < bits; i++) {
- if (!BN_sqr(v, v, ctx)) {
- goto err;
- }
- if (BN_is_bit_set(p, i)) {
- if (!BN_mul(rr, rr, v, ctx)) {
- goto err;
- }
- }
- }
- if (r != rr && !BN_copy(r, rr)) {
- goto err;
- }
- ret = 1;
- err:
- BN_CTX_end(ctx);
- return ret;
- }
- typedef struct bn_recp_ctx_st {
- BIGNUM N; // the divisor
- BIGNUM Nr; // the reciprocal
- int num_bits;
- int shift;
- int flags;
- } BN_RECP_CTX;
- static void BN_RECP_CTX_init(BN_RECP_CTX *recp) {
- BN_init(&recp->N);
- BN_init(&recp->Nr);
- recp->num_bits = 0;
- recp->shift = 0;
- recp->flags = 0;
- }
- static void BN_RECP_CTX_free(BN_RECP_CTX *recp) {
- if (recp == NULL) {
- return;
- }
- BN_free(&recp->N);
- BN_free(&recp->Nr);
- }
- static int BN_RECP_CTX_set(BN_RECP_CTX *recp, const BIGNUM *d, BN_CTX *ctx) {
- if (!BN_copy(&(recp->N), d)) {
- return 0;
- }
- BN_zero(&recp->Nr);
- recp->num_bits = BN_num_bits(d);
- recp->shift = 0;
- return 1;
- }
- // len is the expected size of the result We actually calculate with an extra
- // word of precision, so we can do faster division if the remainder is not
- // required.
- // r := 2^len / m
- static int BN_reciprocal(BIGNUM *r, const BIGNUM *m, int len, BN_CTX *ctx) {
- int ret = -1;
- BIGNUM *t;
- BN_CTX_start(ctx);
- t = BN_CTX_get(ctx);
- if (t == NULL) {
- goto err;
- }
- if (!BN_set_bit(t, len)) {
- goto err;
- }
- if (!BN_div(r, NULL, t, m, ctx)) {
- goto err;
- }
- ret = len;
- err:
- BN_CTX_end(ctx);
- return ret;
- }
- static int BN_div_recp(BIGNUM *dv, BIGNUM *rem, const BIGNUM *m,
- BN_RECP_CTX *recp, BN_CTX *ctx) {
- int i, j, ret = 0;
- BIGNUM *a, *b, *d, *r;
- BN_CTX_start(ctx);
- a = BN_CTX_get(ctx);
- b = BN_CTX_get(ctx);
- if (dv != NULL) {
- d = dv;
- } else {
- d = BN_CTX_get(ctx);
- }
- if (rem != NULL) {
- r = rem;
- } else {
- r = BN_CTX_get(ctx);
- }
- if (a == NULL || b == NULL || d == NULL || r == NULL) {
- goto err;
- }
- if (BN_ucmp(m, &recp->N) < 0) {
- BN_zero(d);
- if (!BN_copy(r, m)) {
- goto err;
- }
- BN_CTX_end(ctx);
- return 1;
- }
- // We want the remainder
- // Given input of ABCDEF / ab
- // we need multiply ABCDEF by 3 digests of the reciprocal of ab
- // i := max(BN_num_bits(m), 2*BN_num_bits(N))
- i = BN_num_bits(m);
- j = recp->num_bits << 1;
- if (j > i) {
- i = j;
- }
- // Nr := round(2^i / N)
- if (i != recp->shift) {
- recp->shift =
- BN_reciprocal(&(recp->Nr), &(recp->N), i,
- ctx); // BN_reciprocal returns i, or -1 for an error
- }
- if (recp->shift == -1) {
- goto err;
- }
- // d := |round(round(m / 2^BN_num_bits(N)) * recp->Nr / 2^(i -
- // BN_num_bits(N)))|
- // = |round(round(m / 2^BN_num_bits(N)) * round(2^i / N) / 2^(i -
- // BN_num_bits(N)))|
- // <= |(m / 2^BN_num_bits(N)) * (2^i / N) * (2^BN_num_bits(N) / 2^i)|
- // = |m/N|
- if (!BN_rshift(a, m, recp->num_bits)) {
- goto err;
- }
- if (!BN_mul(b, a, &(recp->Nr), ctx)) {
- goto err;
- }
- if (!BN_rshift(d, b, i - recp->num_bits)) {
- goto err;
- }
- d->neg = 0;
- if (!BN_mul(b, &(recp->N), d, ctx)) {
- goto err;
- }
- if (!BN_usub(r, m, b)) {
- goto err;
- }
- r->neg = 0;
- j = 0;
- while (BN_ucmp(r, &(recp->N)) >= 0) {
- if (j++ > 2) {
- OPENSSL_PUT_ERROR(BN, BN_R_BAD_RECIPROCAL);
- goto err;
- }
- if (!BN_usub(r, r, &(recp->N))) {
- goto err;
- }
- if (!BN_add_word(d, 1)) {
- goto err;
- }
- }
- r->neg = BN_is_zero(r) ? 0 : m->neg;
- d->neg = m->neg ^ recp->N.neg;
- ret = 1;
- err:
- BN_CTX_end(ctx);
- return ret;
- }
- static int BN_mod_mul_reciprocal(BIGNUM *r, const BIGNUM *x, const BIGNUM *y,
- BN_RECP_CTX *recp, BN_CTX *ctx) {
- int ret = 0;
- BIGNUM *a;
- const BIGNUM *ca;
- BN_CTX_start(ctx);
- a = BN_CTX_get(ctx);
- if (a == NULL) {
- goto err;
- }
- if (y != NULL) {
- if (x == y) {
- if (!BN_sqr(a, x, ctx)) {
- goto err;
- }
- } else {
- if (!BN_mul(a, x, y, ctx)) {
- goto err;
- }
- }
- ca = a;
- } else {
- ca = x; // Just do the mod
- }
- ret = BN_div_recp(NULL, r, ca, recp, ctx);
- err:
- BN_CTX_end(ctx);
- return ret;
- }
- // BN_window_bits_for_exponent_size returns sliding window size for mod_exp with
- // a |b| bit exponent.
- //
- // For window size 'w' (w >= 2) and a random 'b' bits exponent, the number of
- // multiplications is a constant plus on average
- //
- // 2^(w-1) + (b-w)/(w+1);
- //
- // here 2^(w-1) is for precomputing the table (we actually need entries only
- // for windows that have the lowest bit set), and (b-w)/(w+1) is an
- // approximation for the expected number of w-bit windows, not counting the
- // first one.
- //
- // Thus we should use
- //
- // w >= 6 if b > 671
- // w = 5 if 671 > b > 239
- // w = 4 if 239 > b > 79
- // w = 3 if 79 > b > 23
- // w <= 2 if 23 > b
- //
- // (with draws in between). Very small exponents are often selected
- // with low Hamming weight, so we use w = 1 for b <= 23.
- static int BN_window_bits_for_exponent_size(int b) {
- if (b > 671) {
- return 6;
- }
- if (b > 239) {
- return 5;
- }
- if (b > 79) {
- return 4;
- }
- if (b > 23) {
- return 3;
- }
- return 1;
- }
- // TABLE_SIZE is the maximum precomputation table size for *variable* sliding
- // windows. This must be 2^(max_window - 1), where max_window is the largest
- // value returned from |BN_window_bits_for_exponent_size|.
- #define TABLE_SIZE 32
- // TABLE_BITS_SMALL is the smallest value returned from
- // |BN_window_bits_for_exponent_size| when |b| is at most |BN_BITS2| *
- // |BN_SMALL_MAX_WORDS| words.
- #define TABLE_BITS_SMALL 5
- // TABLE_SIZE_SMALL is the same as |TABLE_SIZE|, but when |b| is at most
- // |BN_BITS2| * |BN_SMALL_MAX_WORDS|.
- #define TABLE_SIZE_SMALL (1 << (TABLE_BITS_SMALL - 1))
- static int mod_exp_recp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
- const BIGNUM *m, BN_CTX *ctx) {
- int i, j, bits, ret = 0, wstart, window;
- int start = 1;
- BIGNUM *aa;
- // Table of variables obtained from 'ctx'
- BIGNUM *val[TABLE_SIZE];
- BN_RECP_CTX recp;
- bits = BN_num_bits(p);
- if (bits == 0) {
- // x**0 mod 1 is still zero.
- if (BN_is_one(m)) {
- BN_zero(r);
- return 1;
- }
- return BN_one(r);
- }
- BN_CTX_start(ctx);
- aa = BN_CTX_get(ctx);
- val[0] = BN_CTX_get(ctx);
- if (!aa || !val[0]) {
- goto err;
- }
- BN_RECP_CTX_init(&recp);
- if (m->neg) {
- // ignore sign of 'm'
- if (!BN_copy(aa, m)) {
- goto err;
- }
- aa->neg = 0;
- if (BN_RECP_CTX_set(&recp, aa, ctx) <= 0) {
- goto err;
- }
- } else {
- if (BN_RECP_CTX_set(&recp, m, ctx) <= 0) {
- goto err;
- }
- }
- if (!BN_nnmod(val[0], a, m, ctx)) {
- goto err; // 1
- }
- if (BN_is_zero(val[0])) {
- BN_zero(r);
- ret = 1;
- goto err;
- }
- window = BN_window_bits_for_exponent_size(bits);
- if (window > 1) {
- if (!BN_mod_mul_reciprocal(aa, val[0], val[0], &recp, ctx)) {
- goto err; // 2
- }
- j = 1 << (window - 1);
- for (i = 1; i < j; i++) {
- if (((val[i] = BN_CTX_get(ctx)) == NULL) ||
- !BN_mod_mul_reciprocal(val[i], val[i - 1], aa, &recp, ctx)) {
- goto err;
- }
- }
- }
- start = 1; // This is used to avoid multiplication etc
- // when there is only the value '1' in the
- // buffer.
- wstart = bits - 1; // The top bit of the window
- if (!BN_one(r)) {
- goto err;
- }
- for (;;) {
- int wvalue; // The 'value' of the window
- int wend; // The bottom bit of the window
- if (!BN_is_bit_set(p, wstart)) {
- if (!start) {
- if (!BN_mod_mul_reciprocal(r, r, r, &recp, ctx)) {
- goto err;
- }
- }
- if (wstart == 0) {
- break;
- }
- wstart--;
- continue;
- }
- // We now have wstart on a 'set' bit, we now need to work out
- // how bit a window to do. To do this we need to scan
- // forward until the last set bit before the end of the
- // window
- wvalue = 1;
- wend = 0;
- for (i = 1; i < window; i++) {
- if (wstart - i < 0) {
- break;
- }
- if (BN_is_bit_set(p, wstart - i)) {
- wvalue <<= (i - wend);
- wvalue |= 1;
- wend = i;
- }
- }
- // wend is the size of the current window
- j = wend + 1;
- // add the 'bytes above'
- if (!start) {
- for (i = 0; i < j; i++) {
- if (!BN_mod_mul_reciprocal(r, r, r, &recp, ctx)) {
- goto err;
- }
- }
- }
- // wvalue will be an odd number < 2^window
- if (!BN_mod_mul_reciprocal(r, r, val[wvalue >> 1], &recp, ctx)) {
- goto err;
- }
- // move the 'window' down further
- wstart -= wend + 1;
- start = 0;
- if (wstart < 0) {
- break;
- }
- }
- ret = 1;
- err:
- BN_CTX_end(ctx);
- BN_RECP_CTX_free(&recp);
- return ret;
- }
- int BN_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, const BIGNUM *m,
- BN_CTX *ctx) {
- if (BN_is_odd(m)) {
- return BN_mod_exp_mont(r, a, p, m, ctx, NULL);
- }
- return mod_exp_recp(r, a, p, m, ctx);
- }
- int BN_mod_exp_mont(BIGNUM *rr, const BIGNUM *a, const BIGNUM *p,
- const BIGNUM *m, BN_CTX *ctx, const BN_MONT_CTX *mont) {
- if (!BN_is_odd(m)) {
- OPENSSL_PUT_ERROR(BN, BN_R_CALLED_WITH_EVEN_MODULUS);
- return 0;
- }
- int bits = BN_num_bits(p);
- if (bits == 0) {
- // x**0 mod 1 is still zero.
- if (BN_is_one(m)) {
- BN_zero(rr);
- return 1;
- }
- return BN_one(rr);
- }
- int ret = 0;
- BIGNUM *val[TABLE_SIZE];
- BN_MONT_CTX *new_mont = NULL;
- BN_CTX_start(ctx);
- BIGNUM *d = BN_CTX_get(ctx);
- BIGNUM *r = BN_CTX_get(ctx);
- val[0] = BN_CTX_get(ctx);
- if (!d || !r || !val[0]) {
- goto err;
- }
- // Allocate a montgomery context if it was not supplied by the caller.
- if (mont == NULL) {
- new_mont = BN_MONT_CTX_new_for_modulus(m, ctx);
- if (new_mont == NULL) {
- goto err;
- }
- mont = new_mont;
- }
- const BIGNUM *aa;
- if (a->neg || BN_ucmp(a, m) >= 0) {
- if (!BN_nnmod(val[0], a, m, ctx)) {
- goto err;
- }
- aa = val[0];
- } else {
- aa = a;
- }
- if (BN_is_zero(aa)) {
- BN_zero(rr);
- ret = 1;
- goto err;
- }
- // We exponentiate by looking at sliding windows of the exponent and
- // precomputing powers of |aa|. Windows may be shifted so they always end on a
- // set bit, so only precompute odd powers. We compute val[i] = aa^(2*i + 1)
- // for i = 0 to 2^(window-1), all in Montgomery form.
- int window = BN_window_bits_for_exponent_size(bits);
- if (!BN_to_montgomery(val[0], aa, mont, ctx)) {
- goto err;
- }
- if (window > 1) {
- if (!BN_mod_mul_montgomery(d, val[0], val[0], mont, ctx)) {
- goto err;
- }
- for (int i = 1; i < 1 << (window - 1); i++) {
- val[i] = BN_CTX_get(ctx);
- if (val[i] == NULL ||
- !BN_mod_mul_montgomery(val[i], val[i - 1], d, mont, ctx)) {
- goto err;
- }
- }
- }
- if (!bn_one_to_montgomery(r, mont, ctx)) {
- goto err;
- }
- int r_is_one = 1;
- int wstart = bits - 1; // The top bit of the window.
- for (;;) {
- if (!BN_is_bit_set(p, wstart)) {
- if (!r_is_one && !BN_mod_mul_montgomery(r, r, r, mont, ctx)) {
- goto err;
- }
- if (wstart == 0) {
- break;
- }
- wstart--;
- continue;
- }
- // We now have wstart on a set bit. Find the largest window we can use.
- int wvalue = 1;
- int wsize = 0;
- for (int i = 1; i < window && i <= wstart; i++) {
- if (BN_is_bit_set(p, wstart - i)) {
- wvalue <<= (i - wsize);
- wvalue |= 1;
- wsize = i;
- }
- }
- // Shift |r| to the end of the window.
- if (!r_is_one) {
- for (int i = 0; i < wsize + 1; i++) {
- if (!BN_mod_mul_montgomery(r, r, r, mont, ctx)) {
- goto err;
- }
- }
- }
- assert(wvalue & 1);
- assert(wvalue < (1 << window));
- if (!BN_mod_mul_montgomery(r, r, val[wvalue >> 1], mont, ctx)) {
- goto err;
- }
- r_is_one = 0;
- if (wstart == wsize) {
- break;
- }
- wstart -= wsize + 1;
- }
- if (!BN_from_montgomery(rr, r, mont, ctx)) {
- goto err;
- }
- ret = 1;
- err:
- BN_MONT_CTX_free(new_mont);
- BN_CTX_end(ctx);
- return ret;
- }
- int bn_mod_exp_mont_small(BN_ULONG *r, size_t num_r, const BN_ULONG *a,
- size_t num_a, const BN_ULONG *p, size_t num_p,
- const BN_MONT_CTX *mont) {
- size_t num_n = mont->N.width;
- if (num_n != num_a || num_n != num_r || num_n > BN_SMALL_MAX_WORDS) {
- OPENSSL_PUT_ERROR(BN, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
- return 0;
- }
- if (!BN_is_odd(&mont->N)) {
- OPENSSL_PUT_ERROR(BN, BN_R_CALLED_WITH_EVEN_MODULUS);
- return 0;
- }
- unsigned bits = 0;
- if (num_p != 0) {
- bits = BN_num_bits_word(p[num_p - 1]) + (num_p - 1) * BN_BITS2;
- }
- if (bits == 0) {
- OPENSSL_memset(r, 0, num_r * sizeof(BN_ULONG));
- if (!BN_is_one(&mont->N)) {
- r[0] = 1;
- }
- return 1;
- }
- // We exponentiate by looking at sliding windows of the exponent and
- // precomputing powers of |a|. Windows may be shifted so they always end on a
- // set bit, so only precompute odd powers. We compute val[i] = a^(2*i + 1) for
- // i = 0 to 2^(window-1), all in Montgomery form.
- unsigned window = BN_window_bits_for_exponent_size(bits);
- if (window > TABLE_BITS_SMALL) {
- window = TABLE_BITS_SMALL; // Tolerate excessively large |p|.
- }
- int ret = 0;
- BN_ULONG val[TABLE_SIZE_SMALL][BN_SMALL_MAX_WORDS];
- OPENSSL_memcpy(val[0], a, num_n * sizeof(BN_ULONG));
- if (window > 1) {
- BN_ULONG d[BN_SMALL_MAX_WORDS];
- if (!bn_mod_mul_montgomery_small(d, num_n, val[0], num_n, val[0], num_n,
- mont)) {
- goto err;
- }
- for (unsigned i = 1; i < 1u << (window - 1); i++) {
- if (!bn_mod_mul_montgomery_small(val[i], num_n, val[i - 1], num_n, d,
- num_n, mont)) {
- goto err;
- }
- }
- }
- if (!bn_one_to_montgomery_small(r, num_r, mont)) {
- goto err;
- }
- int r_is_one = 1;
- unsigned wstart = bits - 1; // The top bit of the window.
- for (;;) {
- if (!bn_is_bit_set_words(p, num_p, wstart)) {
- if (!r_is_one &&
- !bn_mod_mul_montgomery_small(r, num_r, r, num_r, r, num_r, mont)) {
- goto err;
- }
- if (wstart == 0) {
- break;
- }
- wstart--;
- continue;
- }
- // We now have wstart on a set bit. Find the largest window we can use.
- unsigned wvalue = 1;
- unsigned wsize = 0;
- for (unsigned i = 1; i < window && i <= wstart; i++) {
- if (bn_is_bit_set_words(p, num_p, wstart - i)) {
- wvalue <<= (i - wsize);
- wvalue |= 1;
- wsize = i;
- }
- }
- // Shift |r| to the end of the window.
- if (!r_is_one) {
- for (unsigned i = 0; i < wsize + 1; i++) {
- if (!bn_mod_mul_montgomery_small(r, num_r, r, num_r, r, num_r, mont)) {
- goto err;
- }
- }
- }
- assert(wvalue & 1);
- assert(wvalue < (1u << window));
- if (!bn_mod_mul_montgomery_small(r, num_r, r, num_r, val[wvalue >> 1],
- num_n, mont)) {
- goto err;
- }
- r_is_one = 0;
- if (wstart == wsize) {
- break;
- }
- wstart -= wsize + 1;
- }
- ret = 1;
- err:
- OPENSSL_cleanse(val, sizeof(val));
- return ret;
- }
- int bn_mod_inverse_prime_mont_small(BN_ULONG *r, size_t num_r,
- const BN_ULONG *a, size_t num_a,
- const BN_MONT_CTX *mont) {
- const BN_ULONG *p = mont->N.d;
- size_t num_p = mont->N.width;
- if (num_p > BN_SMALL_MAX_WORDS || num_p == 0) {
- OPENSSL_PUT_ERROR(BN, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
- return 0;
- }
- // Per Fermat's Little Theorem, a^-1 = a^(p-2) (mod p) for p prime.
- BN_ULONG p_minus_two[BN_SMALL_MAX_WORDS];
- OPENSSL_memcpy(p_minus_two, p, num_p * sizeof(BN_ULONG));
- if (p_minus_two[0] >= 2) {
- p_minus_two[0] -= 2;
- } else {
- p_minus_two[0] -= 2;
- for (size_t i = 1; i < num_p; i++) {
- if (p_minus_two[i]-- != 0) {
- break;
- }
- }
- }
- return bn_mod_exp_mont_small(r, num_r, a, num_a, p_minus_two, num_p, mont);
- }
- // |BN_mod_exp_mont_consttime| stores the precomputed powers in a specific
- // layout so that accessing any of these table values shows the same access
- // pattern as far as cache lines are concerned. The following functions are
- // used to transfer a BIGNUM from/to that table.
- static void copy_to_prebuf(const BIGNUM *b, int top, unsigned char *buf,
- int idx, int window) {
- int i, j;
- const int width = 1 << window;
- BN_ULONG *table = (BN_ULONG *) buf;
- if (top > b->width) {
- top = b->width; // this works because 'buf' is explicitly zeroed
- }
- for (i = 0, j = idx; i < top; i++, j += width) {
- table[j] = b->d[i];
- }
- }
- static int copy_from_prebuf(BIGNUM *b, int top, unsigned char *buf, int idx,
- int window) {
- int i, j;
- const int width = 1 << window;
- volatile BN_ULONG *table = (volatile BN_ULONG *)buf;
- if (!bn_wexpand(b, top)) {
- return 0;
- }
- if (window <= 3) {
- for (i = 0; i < top; i++, table += width) {
- BN_ULONG acc = 0;
- for (j = 0; j < width; j++) {
- acc |= table[j] & ((BN_ULONG)0 - (constant_time_eq_int(j, idx) & 1));
- }
- b->d[i] = acc;
- }
- } else {
- int xstride = 1 << (window - 2);
- BN_ULONG y0, y1, y2, y3;
- i = idx >> (window - 2); // equivalent of idx / xstride
- idx &= xstride - 1; // equivalent of idx % xstride
- y0 = (BN_ULONG)0 - (constant_time_eq_int(i, 0) & 1);
- y1 = (BN_ULONG)0 - (constant_time_eq_int(i, 1) & 1);
- y2 = (BN_ULONG)0 - (constant_time_eq_int(i, 2) & 1);
- y3 = (BN_ULONG)0 - (constant_time_eq_int(i, 3) & 1);
- for (i = 0; i < top; i++, table += width) {
- BN_ULONG acc = 0;
- for (j = 0; j < xstride; j++) {
- acc |= ((table[j + 0 * xstride] & y0) | (table[j + 1 * xstride] & y1) |
- (table[j + 2 * xstride] & y2) | (table[j + 3 * xstride] & y3)) &
- ((BN_ULONG)0 - (constant_time_eq_int(j, idx) & 1));
- }
- b->d[i] = acc;
- }
- }
- b->width = top;
- return 1;
- }
- // BN_mod_exp_mont_conttime is based on the assumption that the L1 data cache
- // line width of the target processor is at least the following value.
- #define MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH (64)
- #define MOD_EXP_CTIME_MIN_CACHE_LINE_MASK \
- (MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH - 1)
- // Window sizes optimized for fixed window size modular exponentiation
- // algorithm (BN_mod_exp_mont_consttime).
- //
- // To achieve the security goals of BN_mode_exp_mont_consttime, the maximum
- // size of the window must not exceed
- // log_2(MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH).
- //
- // Window size thresholds are defined for cache line sizes of 32 and 64, cache
- // line sizes where log_2(32)=5 and log_2(64)=6 respectively. A window size of
- // 7 should only be used on processors that have a 128 byte or greater cache
- // line size.
- #if MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH == 64
- #define BN_window_bits_for_ctime_exponent_size(b) \
- ((b) > 937 ? 6 : (b) > 306 ? 5 : (b) > 89 ? 4 : (b) > 22 ? 3 : 1)
- #define BN_MAX_WINDOW_BITS_FOR_CTIME_EXPONENT_SIZE (6)
- #elif MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH == 32
- #define BN_window_bits_for_ctime_exponent_size(b) \
- ((b) > 306 ? 5 : (b) > 89 ? 4 : (b) > 22 ? 3 : 1)
- #define BN_MAX_WINDOW_BITS_FOR_CTIME_EXPONENT_SIZE (5)
- #endif
- // Given a pointer value, compute the next address that is a cache line
- // multiple.
- #define MOD_EXP_CTIME_ALIGN(x_) \
- ((unsigned char *)(x_) + \
- (MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH - \
- (((size_t)(x_)) & (MOD_EXP_CTIME_MIN_CACHE_LINE_MASK))))
- // This variant of BN_mod_exp_mont() uses fixed windows and the special
- // precomputation memory layout to limit data-dependency to a minimum
- // to protect secret exponents (cf. the hyper-threading timing attacks
- // pointed out by Colin Percival,
- // http://www.daemonology.net/hyperthreading-considered-harmful/)
- int BN_mod_exp_mont_consttime(BIGNUM *rr, const BIGNUM *a, const BIGNUM *p,
- const BIGNUM *m, BN_CTX *ctx,
- const BN_MONT_CTX *mont) {
- int i, ret = 0, window, wvalue;
- BN_MONT_CTX *new_mont = NULL;
- int numPowers;
- unsigned char *powerbufFree = NULL;
- int powerbufLen = 0;
- unsigned char *powerbuf = NULL;
- BIGNUM tmp, am;
- BIGNUM *new_a = NULL;
- if (!BN_is_odd(m)) {
- OPENSSL_PUT_ERROR(BN, BN_R_CALLED_WITH_EVEN_MODULUS);
- return 0;
- }
- // Use all bits stored in |p|, rather than |BN_num_bits|, so we do not leak
- // whether the top bits are zero.
- int max_bits = p->width * BN_BITS2;
- int bits = max_bits;
- if (bits == 0) {
- // x**0 mod 1 is still zero.
- if (BN_is_one(m)) {
- BN_zero(rr);
- return 1;
- }
- return BN_one(rr);
- }
- // Allocate a montgomery context if it was not supplied by the caller.
- if (mont == NULL) {
- new_mont = BN_MONT_CTX_new_for_modulus(m, ctx);
- if (new_mont == NULL) {
- goto err;
- }
- mont = new_mont;
- }
- // Use the width in |mont->N|, rather than the copy in |m|. The assembly
- // implementation assumes it can use |top| to size R.
- int top = mont->N.width;
- if (a->neg || BN_ucmp(a, m) >= 0) {
- new_a = BN_new();
- if (new_a == NULL ||
- !BN_nnmod(new_a, a, m, ctx)) {
- goto err;
- }
- a = new_a;
- }
- #ifdef RSAZ_ENABLED
- // If the size of the operands allow it, perform the optimized
- // RSAZ exponentiation. For further information see
- // crypto/bn/rsaz_exp.c and accompanying assembly modules.
- if ((16 == a->width) && (16 == p->width) && (BN_num_bits(m) == 1024) &&
- rsaz_avx2_eligible()) {
- if (!bn_wexpand(rr, 16)) {
- goto err;
- }
- RSAZ_1024_mod_exp_avx2(rr->d, a->d, p->d, m->d, mont->RR.d, mont->n0[0]);
- rr->width = 16;
- rr->neg = 0;
- ret = 1;
- goto err;
- }
- #endif
- // Get the window size to use with size of p.
- window = BN_window_bits_for_ctime_exponent_size(bits);
- #if defined(OPENSSL_BN_ASM_MONT5)
- if (window >= 5) {
- window = 5; // ~5% improvement for RSA2048 sign, and even for RSA4096
- // reserve space for mont->N.d[] copy
- powerbufLen += top * sizeof(mont->N.d[0]);
- }
- #endif
- // Allocate a buffer large enough to hold all of the pre-computed
- // powers of am, am itself and tmp.
- numPowers = 1 << window;
- powerbufLen +=
- sizeof(m->d[0]) *
- (top * numPowers + ((2 * top) > numPowers ? (2 * top) : numPowers));
- #ifdef alloca
- if (powerbufLen < 3072) {
- powerbufFree = alloca(powerbufLen + MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH);
- } else
- #endif
- {
- if ((powerbufFree = OPENSSL_malloc(
- powerbufLen + MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH)) == NULL) {
- goto err;
- }
- }
- powerbuf = MOD_EXP_CTIME_ALIGN(powerbufFree);
- OPENSSL_memset(powerbuf, 0, powerbufLen);
- #ifdef alloca
- if (powerbufLen < 3072) {
- powerbufFree = NULL;
- }
- #endif
- // lay down tmp and am right after powers table
- tmp.d = (BN_ULONG *)(powerbuf + sizeof(m->d[0]) * top * numPowers);
- am.d = tmp.d + top;
- tmp.width = am.width = 0;
- tmp.dmax = am.dmax = top;
- tmp.neg = am.neg = 0;
- tmp.flags = am.flags = BN_FLG_STATIC_DATA;
- if (!bn_one_to_montgomery(&tmp, mont, ctx)) {
- goto err;
- }
- // prepare a^1 in Montgomery domain
- assert(!a->neg);
- assert(BN_ucmp(a, m) < 0);
- if (!BN_to_montgomery(&am, a, mont, ctx)) {
- goto err;
- }
- #if defined(OPENSSL_BN_ASM_MONT5)
- // This optimization uses ideas from http://eprint.iacr.org/2011/239,
- // specifically optimization of cache-timing attack countermeasures
- // and pre-computation optimization.
- // Dedicated window==4 case improves 512-bit RSA sign by ~15%, but as
- // 512-bit RSA is hardly relevant, we omit it to spare size...
- if (window == 5 && top > 1) {
- const BN_ULONG *n0 = mont->n0;
- BN_ULONG *np;
- // BN_to_montgomery can contaminate words above .top
- // [in BN_DEBUG[_DEBUG] build]...
- for (i = am.width; i < top; i++) {
- am.d[i] = 0;
- }
- for (i = tmp.width; i < top; i++) {
- tmp.d[i] = 0;
- }
- // copy mont->N.d[] to improve cache locality
- for (np = am.d + top, i = 0; i < top; i++) {
- np[i] = mont->N.d[i];
- }
- bn_scatter5(tmp.d, top, powerbuf, 0);
- bn_scatter5(am.d, am.width, powerbuf, 1);
- bn_mul_mont(tmp.d, am.d, am.d, np, n0, top);
- bn_scatter5(tmp.d, top, powerbuf, 2);
- // same as above, but uses squaring for 1/2 of operations
- for (i = 4; i < 32; i *= 2) {
- bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top);
- bn_scatter5(tmp.d, top, powerbuf, i);
- }
- for (i = 3; i < 8; i += 2) {
- int j;
- bn_mul_mont_gather5(tmp.d, am.d, powerbuf, np, n0, top, i - 1);
- bn_scatter5(tmp.d, top, powerbuf, i);
- for (j = 2 * i; j < 32; j *= 2) {
- bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top);
- bn_scatter5(tmp.d, top, powerbuf, j);
- }
- }
- for (; i < 16; i += 2) {
- bn_mul_mont_gather5(tmp.d, am.d, powerbuf, np, n0, top, i - 1);
- bn_scatter5(tmp.d, top, powerbuf, i);
- bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top);
- bn_scatter5(tmp.d, top, powerbuf, 2 * i);
- }
- for (; i < 32; i += 2) {
- bn_mul_mont_gather5(tmp.d, am.d, powerbuf, np, n0, top, i - 1);
- bn_scatter5(tmp.d, top, powerbuf, i);
- }
- bits--;
- for (wvalue = 0, i = bits % 5; i >= 0; i--, bits--) {
- wvalue = (wvalue << 1) + BN_is_bit_set(p, bits);
- }
- bn_gather5(tmp.d, top, powerbuf, wvalue);
- // At this point |bits| is 4 mod 5 and at least -1. (|bits| is the first bit
- // that has not been read yet.)
- assert(bits >= -1 && (bits == -1 || bits % 5 == 4));
- // Scan the exponent one window at a time starting from the most
- // significant bits.
- if (top & 7) {
- while (bits >= 0) {
- for (wvalue = 0, i = 0; i < 5; i++, bits--) {
- wvalue = (wvalue << 1) + BN_is_bit_set(p, bits);
- }
- bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top);
- bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top);
- bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top);
- bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top);
- bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top);
- bn_mul_mont_gather5(tmp.d, tmp.d, powerbuf, np, n0, top, wvalue);
- }
- } else {
- const uint8_t *p_bytes = (const uint8_t *)p->d;
- assert(bits < max_bits);
- // |p = 0| has been handled as a special case, so |max_bits| is at least
- // one word.
- assert(max_bits >= 64);
- // If the first bit to be read lands in the last byte, unroll the first
- // iteration to avoid reading past the bounds of |p->d|. (After the first
- // iteration, we are guaranteed to be past the last byte.) Note |bits|
- // here is the top bit, inclusive.
- if (bits - 4 >= max_bits - 8) {
- // Read five bits from |bits-4| through |bits|, inclusive.
- wvalue = p_bytes[p->width * BN_BYTES - 1];
- wvalue >>= (bits - 4) & 7;
- wvalue &= 0x1f;
- bits -= 5;
- bn_power5(tmp.d, tmp.d, powerbuf, np, n0, top, wvalue);
- }
- while (bits >= 0) {
- // Read five bits from |bits-4| through |bits|, inclusive.
- int first_bit = bits - 4;
- uint16_t val;
- OPENSSL_memcpy(&val, p_bytes + (first_bit >> 3), sizeof(val));
- val >>= first_bit & 7;
- val &= 0x1f;
- bits -= 5;
- bn_power5(tmp.d, tmp.d, powerbuf, np, n0, top, val);
- }
- }
- ret = bn_from_montgomery(tmp.d, tmp.d, NULL, np, n0, top);
- tmp.width = top;
- if (ret) {
- if (!BN_copy(rr, &tmp)) {
- ret = 0;
- }
- goto err; // non-zero ret means it's not error
- }
- } else
- #endif
- {
- copy_to_prebuf(&tmp, top, powerbuf, 0, window);
- copy_to_prebuf(&am, top, powerbuf, 1, window);
- // If the window size is greater than 1, then calculate
- // val[i=2..2^winsize-1]. Powers are computed as a*a^(i-1)
- // (even powers could instead be computed as (a^(i/2))^2
- // to use the slight performance advantage of sqr over mul).
- if (window > 1) {
- if (!BN_mod_mul_montgomery(&tmp, &am, &am, mont, ctx)) {
- goto err;
- }
- copy_to_prebuf(&tmp, top, powerbuf, 2, window);
- for (i = 3; i < numPowers; i++) {
- // Calculate a^i = a^(i-1) * a
- if (!BN_mod_mul_montgomery(&tmp, &am, &tmp, mont, ctx)) {
- goto err;
- }
- copy_to_prebuf(&tmp, top, powerbuf, i, window);
- }
- }
- bits--;
- for (wvalue = 0, i = bits % window; i >= 0; i--, bits--) {
- wvalue = (wvalue << 1) + BN_is_bit_set(p, bits);
- }
- if (!copy_from_prebuf(&tmp, top, powerbuf, wvalue, window)) {
- goto err;
- }
- // Scan the exponent one window at a time starting from the most
- // significant bits.
- while (bits >= 0) {
- wvalue = 0; // The 'value' of the window
- // Scan the window, squaring the result as we go
- for (i = 0; i < window; i++, bits--) {
- if (!BN_mod_mul_montgomery(&tmp, &tmp, &tmp, mont, ctx)) {
- goto err;
- }
- wvalue = (wvalue << 1) + BN_is_bit_set(p, bits);
- }
- // Fetch the appropriate pre-computed value from the pre-buf
- if (!copy_from_prebuf(&am, top, powerbuf, wvalue, window)) {
- goto err;
- }
- // Multiply the result into the intermediate result
- if (!BN_mod_mul_montgomery(&tmp, &tmp, &am, mont, ctx)) {
- goto err;
- }
- }
- }
- // Convert the final result from montgomery to standard format
- if (!BN_from_montgomery(rr, &tmp, mont, ctx)) {
- goto err;
- }
- ret = 1;
- err:
- BN_MONT_CTX_free(new_mont);
- BN_clear_free(new_a);
- OPENSSL_free(powerbufFree);
- return (ret);
- }
- int BN_mod_exp_mont_word(BIGNUM *rr, BN_ULONG a, const BIGNUM *p,
- const BIGNUM *m, BN_CTX *ctx,
- const BN_MONT_CTX *mont) {
- BIGNUM a_bignum;
- BN_init(&a_bignum);
- int ret = 0;
- if (!BN_set_word(&a_bignum, a)) {
- OPENSSL_PUT_ERROR(BN, ERR_R_INTERNAL_ERROR);
- goto err;
- }
- ret = BN_mod_exp_mont(rr, &a_bignum, p, m, ctx, mont);
- err:
- BN_free(&a_bignum);
- return ret;
- }
- #define TABLE_SIZE 32
- int BN_mod_exp2_mont(BIGNUM *rr, const BIGNUM *a1, const BIGNUM *p1,
- const BIGNUM *a2, const BIGNUM *p2, const BIGNUM *m,
- BN_CTX *ctx, const BN_MONT_CTX *mont) {
- BIGNUM tmp;
- BN_init(&tmp);
- int ret = 0;
- BN_MONT_CTX *new_mont = NULL;
- // Allocate a montgomery context if it was not supplied by the caller.
- if (mont == NULL) {
- new_mont = BN_MONT_CTX_new_for_modulus(m, ctx);
- if (new_mont == NULL) {
- goto err;
- }
- mont = new_mont;
- }
- // BN_mod_mul_montgomery removes one Montgomery factor, so passing one
- // Montgomery-encoded and one non-Montgomery-encoded value gives a
- // non-Montgomery-encoded result.
- if (!BN_mod_exp_mont(rr, a1, p1, m, ctx, mont) ||
- !BN_mod_exp_mont(&tmp, a2, p2, m, ctx, mont) ||
- !BN_to_montgomery(rr, rr, mont, ctx) ||
- !BN_mod_mul_montgomery(rr, rr, &tmp, mont, ctx)) {
- goto err;
- }
- ret = 1;
- err:
- BN_MONT_CTX_free(new_mont);
- BN_free(&tmp);
- return ret;
- }
|