aead.h 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423
  1. /* Copyright (c) 2014, Google Inc.
  2. *
  3. * Permission to use, copy, modify, and/or distribute this software for any
  4. * purpose with or without fee is hereby granted, provided that the above
  5. * copyright notice and this permission notice appear in all copies.
  6. *
  7. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  8. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  9. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
  10. * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  11. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
  12. * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
  13. * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */
  14. #ifndef OPENSSL_HEADER_AEAD_H
  15. #define OPENSSL_HEADER_AEAD_H
  16. #include <openssl/base.h>
  17. #if defined(__cplusplus)
  18. extern "C" {
  19. #endif
  20. // Authenticated Encryption with Additional Data.
  21. //
  22. // AEAD couples confidentiality and integrity in a single primitive. AEAD
  23. // algorithms take a key and then can seal and open individual messages. Each
  24. // message has a unique, per-message nonce and, optionally, additional data
  25. // which is authenticated but not included in the ciphertext.
  26. //
  27. // The |EVP_AEAD_CTX_init| function initialises an |EVP_AEAD_CTX| structure and
  28. // performs any precomputation needed to use |aead| with |key|. The length of
  29. // the key, |key_len|, is given in bytes.
  30. //
  31. // The |tag_len| argument contains the length of the tags, in bytes, and allows
  32. // for the processing of truncated authenticators. A zero value indicates that
  33. // the default tag length should be used and this is defined as
  34. // |EVP_AEAD_DEFAULT_TAG_LENGTH| in order to make the code clear. Using
  35. // truncated tags increases an attacker's chance of creating a valid forgery.
  36. // Be aware that the attacker's chance may increase more than exponentially as
  37. // would naively be expected.
  38. //
  39. // When no longer needed, the initialised |EVP_AEAD_CTX| structure must be
  40. // passed to |EVP_AEAD_CTX_cleanup|, which will deallocate any memory used.
  41. //
  42. // With an |EVP_AEAD_CTX| in hand, one can seal and open messages. These
  43. // operations are intended to meet the standard notions of privacy and
  44. // authenticity for authenticated encryption. For formal definitions see
  45. // Bellare and Namprempre, "Authenticated encryption: relations among notions
  46. // and analysis of the generic composition paradigm," Lecture Notes in Computer
  47. // Science B<1976> (2000), 531–545,
  48. // http://www-cse.ucsd.edu/~mihir/papers/oem.html.
  49. //
  50. // When sealing messages, a nonce must be given. The length of the nonce is
  51. // fixed by the AEAD in use and is returned by |EVP_AEAD_nonce_length|. *The
  52. // nonce must be unique for all messages with the same key*. This is critically
  53. // important - nonce reuse may completely undermine the security of the AEAD.
  54. // Nonces may be predictable and public, so long as they are unique. Uniqueness
  55. // may be achieved with a simple counter or, if large enough, may be generated
  56. // randomly. The nonce must be passed into the "open" operation by the receiver
  57. // so must either be implicit (e.g. a counter), or must be transmitted along
  58. // with the sealed message.
  59. //
  60. // The "seal" and "open" operations are atomic - an entire message must be
  61. // encrypted or decrypted in a single call. Large messages may have to be split
  62. // up in order to accommodate this. When doing so, be mindful of the need not to
  63. // repeat nonces and the possibility that an attacker could duplicate, reorder
  64. // or drop message chunks. For example, using a single key for a given (large)
  65. // message and sealing chunks with nonces counting from zero would be secure as
  66. // long as the number of chunks was securely transmitted. (Otherwise an
  67. // attacker could truncate the message by dropping chunks from the end.)
  68. //
  69. // The number of chunks could be transmitted by prefixing it to the plaintext,
  70. // for example. This also assumes that no other message would ever use the same
  71. // key otherwise the rule that nonces must be unique for a given key would be
  72. // violated.
  73. //
  74. // The "seal" and "open" operations also permit additional data to be
  75. // authenticated via the |ad| parameter. This data is not included in the
  76. // ciphertext and must be identical for both the "seal" and "open" call. This
  77. // permits implicit context to be authenticated but may be empty if not needed.
  78. //
  79. // The "seal" and "open" operations may work in-place if the |out| and |in|
  80. // arguments are equal. Otherwise, if |out| and |in| alias, input data may be
  81. // overwritten before it is read. This situation will cause an error.
  82. //
  83. // The "seal" and "open" operations return one on success and zero on error.
  84. // AEAD algorithms.
  85. // EVP_aead_aes_128_gcm is AES-128 in Galois Counter Mode.
  86. OPENSSL_EXPORT const EVP_AEAD *EVP_aead_aes_128_gcm(void);
  87. // EVP_aead_aes_256_gcm is AES-256 in Galois Counter Mode.
  88. OPENSSL_EXPORT const EVP_AEAD *EVP_aead_aes_256_gcm(void);
  89. // EVP_aead_chacha20_poly1305 is the AEAD built from ChaCha20 and
  90. // Poly1305 as described in RFC 7539.
  91. OPENSSL_EXPORT const EVP_AEAD *EVP_aead_chacha20_poly1305(void);
  92. // EVP_aead_aes_128_ctr_hmac_sha256 is AES-128 in CTR mode with HMAC-SHA256 for
  93. // authentication. The nonce is 12 bytes; the bottom 32-bits are used as the
  94. // block counter, thus the maximum plaintext size is 64GB.
  95. OPENSSL_EXPORT const EVP_AEAD *EVP_aead_aes_128_ctr_hmac_sha256(void);
  96. // EVP_aead_aes_256_ctr_hmac_sha256 is AES-256 in CTR mode with HMAC-SHA256 for
  97. // authentication. See |EVP_aead_aes_128_ctr_hmac_sha256| for details.
  98. OPENSSL_EXPORT const EVP_AEAD *EVP_aead_aes_256_ctr_hmac_sha256(void);
  99. // EVP_aead_aes_128_gcm_siv is AES-128 in GCM-SIV mode. See
  100. // https://tools.ietf.org/html/draft-irtf-cfrg-gcmsiv-02
  101. OPENSSL_EXPORT const EVP_AEAD *EVP_aead_aes_128_gcm_siv(void);
  102. // EVP_aead_aes_256_gcm_siv is AES-256 in GCM-SIV mode. See
  103. // https://tools.ietf.org/html/draft-irtf-cfrg-gcmsiv-02
  104. OPENSSL_EXPORT const EVP_AEAD *EVP_aead_aes_256_gcm_siv(void);
  105. // EVP_has_aes_hardware returns one if we enable hardware support for fast and
  106. // constant-time AES-GCM.
  107. OPENSSL_EXPORT int EVP_has_aes_hardware(void);
  108. // Utility functions.
  109. // EVP_AEAD_key_length returns the length, in bytes, of the keys used by
  110. // |aead|.
  111. OPENSSL_EXPORT size_t EVP_AEAD_key_length(const EVP_AEAD *aead);
  112. // EVP_AEAD_nonce_length returns the length, in bytes, of the per-message nonce
  113. // for |aead|.
  114. OPENSSL_EXPORT size_t EVP_AEAD_nonce_length(const EVP_AEAD *aead);
  115. // EVP_AEAD_max_overhead returns the maximum number of additional bytes added
  116. // by the act of sealing data with |aead|.
  117. OPENSSL_EXPORT size_t EVP_AEAD_max_overhead(const EVP_AEAD *aead);
  118. // EVP_AEAD_max_tag_len returns the maximum tag length when using |aead|. This
  119. // is the largest value that can be passed as |tag_len| to
  120. // |EVP_AEAD_CTX_init|.
  121. OPENSSL_EXPORT size_t EVP_AEAD_max_tag_len(const EVP_AEAD *aead);
  122. // AEAD operations.
  123. // An EVP_AEAD_CTX represents an AEAD algorithm configured with a specific key
  124. // and message-independent IV.
  125. typedef struct evp_aead_ctx_st {
  126. const EVP_AEAD *aead;
  127. // aead_state is an opaque pointer to whatever state the AEAD needs to
  128. // maintain.
  129. void *aead_state;
  130. // tag_len may contain the actual length of the authentication tag if it is
  131. // known at initialization time.
  132. uint8_t tag_len;
  133. } EVP_AEAD_CTX;
  134. // EVP_AEAD_MAX_KEY_LENGTH contains the maximum key length used by
  135. // any AEAD defined in this header.
  136. #define EVP_AEAD_MAX_KEY_LENGTH 80
  137. // EVP_AEAD_MAX_NONCE_LENGTH contains the maximum nonce length used by
  138. // any AEAD defined in this header.
  139. #define EVP_AEAD_MAX_NONCE_LENGTH 16
  140. // EVP_AEAD_MAX_OVERHEAD contains the maximum overhead used by any AEAD
  141. // defined in this header.
  142. #define EVP_AEAD_MAX_OVERHEAD 64
  143. // EVP_AEAD_DEFAULT_TAG_LENGTH is a magic value that can be passed to
  144. // EVP_AEAD_CTX_init to indicate that the default tag length for an AEAD should
  145. // be used.
  146. #define EVP_AEAD_DEFAULT_TAG_LENGTH 0
  147. // EVP_AEAD_CTX_zero sets an uninitialized |ctx| to the zero state. It must be
  148. // initialized with |EVP_AEAD_CTX_init| before use. It is safe, but not
  149. // necessary, to call |EVP_AEAD_CTX_cleanup| in this state. This may be used for
  150. // more uniform cleanup of |EVP_AEAD_CTX|.
  151. OPENSSL_EXPORT void EVP_AEAD_CTX_zero(EVP_AEAD_CTX *ctx);
  152. // EVP_AEAD_CTX_new allocates an |EVP_AEAD_CTX|, calls |EVP_AEAD_CTX_init| and
  153. // returns the |EVP_AEAD_CTX|, or NULL on error.
  154. OPENSSL_EXPORT EVP_AEAD_CTX *EVP_AEAD_CTX_new(const EVP_AEAD *aead,
  155. const uint8_t *key,
  156. size_t key_len, size_t tag_len);
  157. // EVP_AEAD_CTX_free calls |EVP_AEAD_CTX_cleanup| and |OPENSSL_free| on
  158. // |ctx|.
  159. OPENSSL_EXPORT void EVP_AEAD_CTX_free(EVP_AEAD_CTX *ctx);
  160. // EVP_AEAD_CTX_init initializes |ctx| for the given AEAD algorithm. The |impl|
  161. // argument is ignored and should be NULL. Authentication tags may be truncated
  162. // by passing a size as |tag_len|. A |tag_len| of zero indicates the default
  163. // tag length and this is defined as EVP_AEAD_DEFAULT_TAG_LENGTH for
  164. // readability.
  165. //
  166. // Returns 1 on success. Otherwise returns 0 and pushes to the error stack. In
  167. // the error case, you do not need to call |EVP_AEAD_CTX_cleanup|, but it's
  168. // harmless to do so.
  169. OPENSSL_EXPORT int EVP_AEAD_CTX_init(EVP_AEAD_CTX *ctx, const EVP_AEAD *aead,
  170. const uint8_t *key, size_t key_len,
  171. size_t tag_len, ENGINE *impl);
  172. // EVP_AEAD_CTX_cleanup frees any data allocated by |ctx|. It is a no-op to
  173. // call |EVP_AEAD_CTX_cleanup| on a |EVP_AEAD_CTX| that has been |memset| to
  174. // all zeros.
  175. OPENSSL_EXPORT void EVP_AEAD_CTX_cleanup(EVP_AEAD_CTX *ctx);
  176. // EVP_AEAD_CTX_seal encrypts and authenticates |in_len| bytes from |in| and
  177. // authenticates |ad_len| bytes from |ad| and writes the result to |out|. It
  178. // returns one on success and zero otherwise.
  179. //
  180. // This function may be called concurrently with itself or any other seal/open
  181. // function on the same |EVP_AEAD_CTX|.
  182. //
  183. // At most |max_out_len| bytes are written to |out| and, in order to ensure
  184. // success, |max_out_len| should be |in_len| plus the result of
  185. // |EVP_AEAD_max_overhead|. On successful return, |*out_len| is set to the
  186. // actual number of bytes written.
  187. //
  188. // The length of |nonce|, |nonce_len|, must be equal to the result of
  189. // |EVP_AEAD_nonce_length| for this AEAD.
  190. //
  191. // |EVP_AEAD_CTX_seal| never results in a partial output. If |max_out_len| is
  192. // insufficient, zero will be returned. If any error occurs, |out| will be
  193. // filled with zero bytes and |*out_len| set to zero.
  194. //
  195. // If |in| and |out| alias then |out| must be == |in|.
  196. OPENSSL_EXPORT int EVP_AEAD_CTX_seal(const EVP_AEAD_CTX *ctx, uint8_t *out,
  197. size_t *out_len, size_t max_out_len,
  198. const uint8_t *nonce, size_t nonce_len,
  199. const uint8_t *in, size_t in_len,
  200. const uint8_t *ad, size_t ad_len);
  201. // EVP_AEAD_CTX_open authenticates |in_len| bytes from |in| and |ad_len| bytes
  202. // from |ad| and decrypts at most |in_len| bytes into |out|. It returns one on
  203. // success and zero otherwise.
  204. //
  205. // This function may be called concurrently with itself or any other seal/open
  206. // function on the same |EVP_AEAD_CTX|.
  207. //
  208. // At most |in_len| bytes are written to |out|. In order to ensure success,
  209. // |max_out_len| should be at least |in_len|. On successful return, |*out_len|
  210. // is set to the the actual number of bytes written.
  211. //
  212. // The length of |nonce|, |nonce_len|, must be equal to the result of
  213. // |EVP_AEAD_nonce_length| for this AEAD.
  214. //
  215. // |EVP_AEAD_CTX_open| never results in a partial output. If |max_out_len| is
  216. // insufficient, zero will be returned. If any error occurs, |out| will be
  217. // filled with zero bytes and |*out_len| set to zero.
  218. //
  219. // If |in| and |out| alias then |out| must be == |in|.
  220. OPENSSL_EXPORT int EVP_AEAD_CTX_open(const EVP_AEAD_CTX *ctx, uint8_t *out,
  221. size_t *out_len, size_t max_out_len,
  222. const uint8_t *nonce, size_t nonce_len,
  223. const uint8_t *in, size_t in_len,
  224. const uint8_t *ad, size_t ad_len);
  225. // EVP_AEAD_CTX_seal_scatter encrypts and authenticates |in_len| bytes from |in|
  226. // and authenticates |ad_len| bytes from |ad|. It writes |in_len| bytes of
  227. // ciphertext to |out| and the authentication tag to |out_tag|. It returns one
  228. // on success and zero otherwise.
  229. //
  230. // This function may be called concurrently with itself or any other seal/open
  231. // function on the same |EVP_AEAD_CTX|.
  232. //
  233. // Exactly |in_len| bytes are written to |out|, and up to
  234. // |EVP_AEAD_max_overhead+extra_in_len| bytes to |out_tag|. On successful
  235. // return, |*out_tag_len| is set to the actual number of bytes written to
  236. // |out_tag|.
  237. //
  238. // |extra_in| may point to an additional plaintext input buffer if the cipher
  239. // supports it. If present, |extra_in_len| additional bytes of plaintext are
  240. // encrypted and authenticated, and the ciphertext is written (before the tag)
  241. // to |out_tag|. |max_out_tag_len| must be sized to allow for the additional
  242. // |extra_in_len| bytes.
  243. //
  244. // The length of |nonce|, |nonce_len|, must be equal to the result of
  245. // |EVP_AEAD_nonce_length| for this AEAD.
  246. //
  247. // |EVP_AEAD_CTX_seal_scatter| never results in a partial output. If
  248. // |max_out_tag_len| is insufficient, zero will be returned. If any error
  249. // occurs, |out| and |out_tag| will be filled with zero bytes and |*out_tag_len|
  250. // set to zero.
  251. //
  252. // If |in| and |out| alias then |out| must be == |in|. |out_tag| may not alias
  253. // any other argument.
  254. OPENSSL_EXPORT int EVP_AEAD_CTX_seal_scatter(
  255. const EVP_AEAD_CTX *ctx, uint8_t *out,
  256. uint8_t *out_tag, size_t *out_tag_len, size_t max_out_tag_len,
  257. const uint8_t *nonce, size_t nonce_len,
  258. const uint8_t *in, size_t in_len,
  259. const uint8_t *extra_in, size_t extra_in_len,
  260. const uint8_t *ad, size_t ad_len);
  261. // EVP_AEAD_CTX_open_gather decrypts and authenticates |in_len| bytes from |in|
  262. // and authenticates |ad_len| bytes from |ad| using |in_tag_len| bytes of
  263. // authentication tag from |in_tag|. If successful, it writes |in_len| bytes of
  264. // plaintext to |out|. It returns one on success and zero otherwise.
  265. //
  266. // This function may be called concurrently with itself or any other seal/open
  267. // function on the same |EVP_AEAD_CTX|.
  268. //
  269. // The length of |nonce|, |nonce_len|, must be equal to the result of
  270. // |EVP_AEAD_nonce_length| for this AEAD.
  271. //
  272. // |EVP_AEAD_CTX_open_gather| never results in a partial output. If any error
  273. // occurs, |out| will be filled with zero bytes.
  274. //
  275. // If |in| and |out| alias then |out| must be == |in|.
  276. OPENSSL_EXPORT int EVP_AEAD_CTX_open_gather(
  277. const EVP_AEAD_CTX *ctx, uint8_t *out, const uint8_t *nonce,
  278. size_t nonce_len, const uint8_t *in, size_t in_len, const uint8_t *in_tag,
  279. size_t in_tag_len, const uint8_t *ad, size_t ad_len);
  280. // EVP_AEAD_CTX_aead returns the underlying AEAD for |ctx|, or NULL if one has
  281. // not been set.
  282. OPENSSL_EXPORT const EVP_AEAD *EVP_AEAD_CTX_aead(const EVP_AEAD_CTX *ctx);
  283. // TLS-specific AEAD algorithms.
  284. //
  285. // These AEAD primitives do not meet the definition of generic AEADs. They are
  286. // all specific to TLS and should not be used outside of that context. They must
  287. // be initialized with |EVP_AEAD_CTX_init_with_direction|, are stateful, and may
  288. // not be used concurrently. Any nonces are used as IVs, so they must be
  289. // unpredictable. They only accept an |ad| parameter of length 11 (the standard
  290. // TLS one with length omitted).
  291. OPENSSL_EXPORT const EVP_AEAD *EVP_aead_aes_128_cbc_sha1_tls(void);
  292. OPENSSL_EXPORT const EVP_AEAD *EVP_aead_aes_128_cbc_sha1_tls_implicit_iv(void);
  293. OPENSSL_EXPORT const EVP_AEAD *EVP_aead_aes_128_cbc_sha256_tls(void);
  294. OPENSSL_EXPORT const EVP_AEAD *EVP_aead_aes_256_cbc_sha1_tls(void);
  295. OPENSSL_EXPORT const EVP_AEAD *EVP_aead_aes_256_cbc_sha1_tls_implicit_iv(void);
  296. OPENSSL_EXPORT const EVP_AEAD *EVP_aead_aes_256_cbc_sha256_tls(void);
  297. OPENSSL_EXPORT const EVP_AEAD *EVP_aead_aes_256_cbc_sha384_tls(void);
  298. OPENSSL_EXPORT const EVP_AEAD *EVP_aead_des_ede3_cbc_sha1_tls(void);
  299. OPENSSL_EXPORT const EVP_AEAD *EVP_aead_des_ede3_cbc_sha1_tls_implicit_iv(void);
  300. OPENSSL_EXPORT const EVP_AEAD *EVP_aead_null_sha1_tls(void);
  301. // EVP_aead_aes_128_gcm_tls12 is AES-128 in Galois Counter Mode using the TLS
  302. // 1.2 nonce construction.
  303. OPENSSL_EXPORT const EVP_AEAD *EVP_aead_aes_128_gcm_tls12(void);
  304. // EVP_aead_aes_256_gcm_tls12 is AES-256 in Galois Counter Mode using the TLS
  305. // 1.2 nonce construction.
  306. OPENSSL_EXPORT const EVP_AEAD *EVP_aead_aes_256_gcm_tls12(void);
  307. // SSLv3-specific AEAD algorithms.
  308. //
  309. // These AEAD primitives do not meet the definition of generic AEADs. They are
  310. // all specific to SSLv3 and should not be used outside of that context. They
  311. // must be initialized with |EVP_AEAD_CTX_init_with_direction|, are stateful,
  312. // and may not be used concurrently. They only accept an |ad| parameter of
  313. // length 9 (the standard TLS one with length and version omitted).
  314. OPENSSL_EXPORT const EVP_AEAD *EVP_aead_aes_128_cbc_sha1_ssl3(void);
  315. OPENSSL_EXPORT const EVP_AEAD *EVP_aead_aes_256_cbc_sha1_ssl3(void);
  316. OPENSSL_EXPORT const EVP_AEAD *EVP_aead_des_ede3_cbc_sha1_ssl3(void);
  317. OPENSSL_EXPORT const EVP_AEAD *EVP_aead_null_sha1_ssl3(void);
  318. // Obscure functions.
  319. // evp_aead_direction_t denotes the direction of an AEAD operation.
  320. enum evp_aead_direction_t {
  321. evp_aead_open,
  322. evp_aead_seal,
  323. };
  324. // EVP_AEAD_CTX_init_with_direction calls |EVP_AEAD_CTX_init| for normal
  325. // AEADs. For TLS-specific and SSL3-specific AEADs, it initializes |ctx| for a
  326. // given direction.
  327. OPENSSL_EXPORT int EVP_AEAD_CTX_init_with_direction(
  328. EVP_AEAD_CTX *ctx, const EVP_AEAD *aead, const uint8_t *key, size_t key_len,
  329. size_t tag_len, enum evp_aead_direction_t dir);
  330. // EVP_AEAD_CTX_get_iv sets |*out_len| to the length of the IV for |ctx| and
  331. // sets |*out_iv| to point to that many bytes of the current IV. This is only
  332. // meaningful for AEADs with implicit IVs (i.e. CBC mode in SSLv3 and TLS 1.0).
  333. //
  334. // It returns one on success or zero on error.
  335. OPENSSL_EXPORT int EVP_AEAD_CTX_get_iv(const EVP_AEAD_CTX *ctx,
  336. const uint8_t **out_iv, size_t *out_len);
  337. // EVP_AEAD_CTX_tag_len computes the exact byte length of the tag written by
  338. // |EVP_AEAD_CTX_seal_scatter| and writes it to |*out_tag_len|. It returns one
  339. // on success or zero on error. |in_len| and |extra_in_len| must equal the
  340. // arguments of the same names passed to |EVP_AEAD_CTX_seal_scatter|.
  341. OPENSSL_EXPORT int EVP_AEAD_CTX_tag_len(const EVP_AEAD_CTX *ctx,
  342. size_t *out_tag_len,
  343. const size_t in_len,
  344. const size_t extra_in_len);
  345. #if defined(__cplusplus)
  346. } // extern C
  347. #if !defined(BORINGSSL_NO_CXX)
  348. extern "C++" {
  349. namespace bssl {
  350. using ScopedEVP_AEAD_CTX =
  351. internal::StackAllocated<EVP_AEAD_CTX, void, EVP_AEAD_CTX_zero,
  352. EVP_AEAD_CTX_cleanup>;
  353. BORINGSSL_MAKE_DELETER(EVP_AEAD_CTX, EVP_AEAD_CTX_free)
  354. } // namespace bssl
  355. } // extern C++
  356. #endif
  357. #endif
  358. #endif // OPENSSL_HEADER_AEAD_H