SHA2.swift 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286
  1. //
  2. // SHA2.swift
  3. // CryptoSwift
  4. //
  5. // Created by Marcin Krzyzanowski on 24/08/14.
  6. // Copyright (c) 2014 Marcin Krzyzanowski. All rights reserved.
  7. //
  8. final class SHA2 : HashProtocol {
  9. var size:Int { return variant.rawValue }
  10. let variant:SHA2.Variant
  11. let message: [UInt8]
  12. init(_ message:[UInt8], variant: SHA2.Variant) {
  13. self.variant = variant
  14. self.message = message
  15. }
  16. enum Variant: RawRepresentable {
  17. case sha224, sha256, sha384, sha512
  18. typealias RawValue = Int
  19. var rawValue: RawValue {
  20. switch (self) {
  21. case .sha224:
  22. return 224
  23. case .sha256:
  24. return 256
  25. case .sha384:
  26. return 384
  27. case .sha512:
  28. return 512
  29. }
  30. }
  31. init?(rawValue: RawValue) {
  32. switch (rawValue) {
  33. case 224:
  34. self = .sha224
  35. break;
  36. case 256:
  37. self = .sha256
  38. break;
  39. case 384:
  40. self = .sha384
  41. break;
  42. case 512:
  43. self = .sha512
  44. break;
  45. default:
  46. return nil
  47. }
  48. }
  49. var size:Int { return self.rawValue }
  50. private var h:[UInt64] {
  51. switch (self) {
  52. case .sha224:
  53. return [0xc1059ed8, 0x367cd507, 0x3070dd17, 0xf70e5939, 0xffc00b31, 0x68581511, 0x64f98fa7, 0xbefa4fa4]
  54. case .sha256:
  55. return [0x6a09e667, 0xbb67ae85, 0x3c6ef372, 0xa54ff53a, 0x510e527f, 0x9b05688c, 0x1f83d9ab, 0x5be0cd19]
  56. case .sha384:
  57. return [0xcbbb9d5dc1059ed8, 0x629a292a367cd507, 0x9159015a3070dd17, 0x152fecd8f70e5939, 0x67332667ffc00b31, 0x8eb44a8768581511, 0xdb0c2e0d64f98fa7, 0x47b5481dbefa4fa4]
  58. case .sha512:
  59. return [0x6a09e667f3bcc908, 0xbb67ae8584caa73b, 0x3c6ef372fe94f82b, 0xa54ff53a5f1d36f1, 0x510e527fade682d1, 0x9b05688c2b3e6c1f, 0x1f83d9abfb41bd6b, 0x5be0cd19137e2179]
  60. }
  61. }
  62. private var k:[UInt64] {
  63. switch (self) {
  64. case .sha224, .sha256:
  65. return [0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
  66. 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
  67. 0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
  68. 0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
  69. 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
  70. 0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
  71. 0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
  72. 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2]
  73. case .sha384, .sha512:
  74. return [0x428a2f98d728ae22, 0x7137449123ef65cd, 0xb5c0fbcfec4d3b2f, 0xe9b5dba58189dbbc, 0x3956c25bf348b538,
  75. 0x59f111f1b605d019, 0x923f82a4af194f9b, 0xab1c5ed5da6d8118, 0xd807aa98a3030242, 0x12835b0145706fbe,
  76. 0x243185be4ee4b28c, 0x550c7dc3d5ffb4e2, 0x72be5d74f27b896f, 0x80deb1fe3b1696b1, 0x9bdc06a725c71235,
  77. 0xc19bf174cf692694, 0xe49b69c19ef14ad2, 0xefbe4786384f25e3, 0x0fc19dc68b8cd5b5, 0x240ca1cc77ac9c65,
  78. 0x2de92c6f592b0275, 0x4a7484aa6ea6e483, 0x5cb0a9dcbd41fbd4, 0x76f988da831153b5, 0x983e5152ee66dfab,
  79. 0xa831c66d2db43210, 0xb00327c898fb213f, 0xbf597fc7beef0ee4, 0xc6e00bf33da88fc2, 0xd5a79147930aa725,
  80. 0x06ca6351e003826f, 0x142929670a0e6e70, 0x27b70a8546d22ffc, 0x2e1b21385c26c926, 0x4d2c6dfc5ac42aed,
  81. 0x53380d139d95b3df, 0x650a73548baf63de, 0x766a0abb3c77b2a8, 0x81c2c92e47edaee6, 0x92722c851482353b,
  82. 0xa2bfe8a14cf10364, 0xa81a664bbc423001, 0xc24b8b70d0f89791, 0xc76c51a30654be30, 0xd192e819d6ef5218,
  83. 0xd69906245565a910, 0xf40e35855771202a, 0x106aa07032bbd1b8, 0x19a4c116b8d2d0c8, 0x1e376c085141ab53,
  84. 0x2748774cdf8eeb99, 0x34b0bcb5e19b48a8, 0x391c0cb3c5c95a63, 0x4ed8aa4ae3418acb, 0x5b9cca4f7763e373,
  85. 0x682e6ff3d6b2b8a3, 0x748f82ee5defb2fc, 0x78a5636f43172f60, 0x84c87814a1f0ab72, 0x8cc702081a6439ec,
  86. 0x90befffa23631e28, 0xa4506cebde82bde9, 0xbef9a3f7b2c67915, 0xc67178f2e372532b, 0xca273eceea26619c,
  87. 0xd186b8c721c0c207, 0xeada7dd6cde0eb1e, 0xf57d4f7fee6ed178, 0x06f067aa72176fba, 0x0a637dc5a2c898a6,
  88. 0x113f9804bef90dae, 0x1b710b35131c471b, 0x28db77f523047d84, 0x32caab7b40c72493, 0x3c9ebe0a15c9bebc,
  89. 0x431d67c49c100d4c, 0x4cc5d4becb3e42b6, 0x597f299cfc657e2a, 0x5fcb6fab3ad6faec, 0x6c44198c4a475817]
  90. }
  91. }
  92. private func resultingArray<T>(hh:[T]) -> ArraySlice<T> {
  93. switch (self) {
  94. case .sha224:
  95. return hh[0..<7]
  96. case .sha384:
  97. return hh[0..<6]
  98. default:
  99. break;
  100. }
  101. return ArraySlice(hh)
  102. }
  103. }
  104. //FIXME: I can't do Generic func out of calculate32 and calculate64 (UInt32 vs UInt64), but if you can - please do pull request.
  105. func calculate32() -> [UInt8] {
  106. var tmpMessage = self.prepare(64)
  107. // hash values
  108. var hh = [UInt32]()
  109. variant.h.forEach {(h) -> () in
  110. hh.append(UInt32(h))
  111. }
  112. // append message length, in a 64-bit big-endian integer. So now the message length is a multiple of 512 bits.
  113. tmpMessage += (message.count * 8).bytes(64 / 8)
  114. // Process the message in successive 512-bit chunks:
  115. let chunkSizeBytes = 512 / 8 // 64
  116. for chunk in BytesSequence(chunkSize: chunkSizeBytes, data: tmpMessage) {
  117. // break chunk into sixteen 32-bit words M[j], 0 ≤ j ≤ 15, big-endian
  118. // Extend the sixteen 32-bit words into sixty-four 32-bit words:
  119. var M:[UInt32] = [UInt32](count: variant.k.count, repeatedValue: 0)
  120. for x in 0..<M.count {
  121. switch (x) {
  122. case 0...15:
  123. let start = chunk.startIndex + (x * sizeofValue(M[x]))
  124. let end = start + sizeofValue(M[x])
  125. let le = toUInt32Array(chunk[start..<end])[0]
  126. M[x] = le.bigEndian
  127. break
  128. default:
  129. let s0 = rotateRight(M[x-15], n: 7) ^ rotateRight(M[x-15], n: 18) ^ (M[x-15] >> 3) //FIXME: n
  130. let s1 = rotateRight(M[x-2], n: 17) ^ rotateRight(M[x-2], n: 19) ^ (M[x-2] >> 10)
  131. M[x] = M[x-16] &+ s0 &+ M[x-7] &+ s1
  132. break
  133. }
  134. }
  135. var A = hh[0]
  136. var B = hh[1]
  137. var C = hh[2]
  138. var D = hh[3]
  139. var E = hh[4]
  140. var F = hh[5]
  141. var G = hh[6]
  142. var H = hh[7]
  143. // Main loop
  144. for j in 0..<variant.k.count {
  145. let s0 = rotateRight(A,n: 2) ^ rotateRight(A,n: 13) ^ rotateRight(A,n: 22)
  146. let maj = (A & B) ^ (A & C) ^ (B & C)
  147. let t2 = s0 &+ maj
  148. let s1 = rotateRight(E,n: 6) ^ rotateRight(E,n: 11) ^ rotateRight(E,n: 25)
  149. let ch = (E & F) ^ ((~E) & G)
  150. let t1 = H &+ s1 &+ ch &+ UInt32(variant.k[j]) &+ M[j]
  151. H = G
  152. G = F
  153. F = E
  154. E = D &+ t1
  155. D = C
  156. C = B
  157. B = A
  158. A = t1 &+ t2
  159. }
  160. hh[0] = (hh[0] &+ A)
  161. hh[1] = (hh[1] &+ B)
  162. hh[2] = (hh[2] &+ C)
  163. hh[3] = (hh[3] &+ D)
  164. hh[4] = (hh[4] &+ E)
  165. hh[5] = (hh[5] &+ F)
  166. hh[6] = (hh[6] &+ G)
  167. hh[7] = (hh[7] &+ H)
  168. }
  169. // Produce the final hash value (big-endian) as a 160 bit number:
  170. var result = [UInt8]()
  171. result.reserveCapacity(hh.count / 4)
  172. variant.resultingArray(hh).forEach {
  173. let item = $0.bigEndian
  174. result += [UInt8(item & 0xff), UInt8((item >> 8) & 0xff), UInt8((item >> 16) & 0xff), UInt8((item >> 24) & 0xff)]
  175. }
  176. return result
  177. }
  178. func calculate64() -> [UInt8] {
  179. var tmpMessage = self.prepare(128)
  180. // hash values
  181. var hh = [UInt64]()
  182. variant.h.forEach {(h) -> () in
  183. hh.append(h)
  184. }
  185. // append message length, in a 64-bit big-endian integer. So now the message length is a multiple of 512 bits.
  186. tmpMessage += (message.count * 8).bytes(64 / 8)
  187. // Process the message in successive 1024-bit chunks:
  188. let chunkSizeBytes = 1024 / 8 // 128
  189. for chunk in BytesSequence(chunkSize: chunkSizeBytes, data: tmpMessage) {
  190. // break chunk into sixteen 64-bit words M[j], 0 ≤ j ≤ 15, big-endian
  191. // Extend the sixteen 64-bit words into eighty 64-bit words:
  192. var M = [UInt64](count: variant.k.count, repeatedValue: 0)
  193. for x in 0..<M.count {
  194. switch (x) {
  195. case 0...15:
  196. let start = chunk.startIndex + (x * sizeofValue(M[x]))
  197. let end = start + sizeofValue(M[x])
  198. let le = toUInt64Array(chunk[start..<end])[0]
  199. M[x] = le.bigEndian
  200. break
  201. default:
  202. let s0 = rotateRight(M[x-15], n: 1) ^ rotateRight(M[x-15], n: 8) ^ (M[x-15] >> 7)
  203. let s1 = rotateRight(M[x-2], n: 19) ^ rotateRight(M[x-2], n: 61) ^ (M[x-2] >> 6)
  204. M[x] = M[x-16] &+ s0 &+ M[x-7] &+ s1
  205. break
  206. }
  207. }
  208. var A = hh[0]
  209. var B = hh[1]
  210. var C = hh[2]
  211. var D = hh[3]
  212. var E = hh[4]
  213. var F = hh[5]
  214. var G = hh[6]
  215. var H = hh[7]
  216. // Main loop
  217. for j in 0..<variant.k.count {
  218. let s0 = rotateRight(A,n: 28) ^ rotateRight(A,n: 34) ^ rotateRight(A,n: 39) //FIXME: n:
  219. let maj = (A & B) ^ (A & C) ^ (B & C)
  220. let t2 = s0 &+ maj
  221. let s1 = rotateRight(E,n: 14) ^ rotateRight(E,n: 18) ^ rotateRight(E,n: 41)
  222. let ch = (E & F) ^ ((~E) & G)
  223. let t1 = H &+ s1 &+ ch &+ variant.k[j] &+ UInt64(M[j])
  224. H = G
  225. G = F
  226. F = E
  227. E = D &+ t1
  228. D = C
  229. C = B
  230. B = A
  231. A = t1 &+ t2
  232. }
  233. hh[0] = (hh[0] &+ A)
  234. hh[1] = (hh[1] &+ B)
  235. hh[2] = (hh[2] &+ C)
  236. hh[3] = (hh[3] &+ D)
  237. hh[4] = (hh[4] &+ E)
  238. hh[5] = (hh[5] &+ F)
  239. hh[6] = (hh[6] &+ G)
  240. hh[7] = (hh[7] &+ H)
  241. }
  242. // Produce the final hash value (big-endian)
  243. var result = [UInt8]()
  244. result.reserveCapacity(hh.count / 4)
  245. variant.resultingArray(hh).forEach {
  246. let item = $0.bigEndian
  247. var partialResult = [UInt8]()
  248. partialResult.reserveCapacity(8)
  249. for i in 0..<8 {
  250. let shift = UInt64(8 * i)
  251. partialResult.append(UInt8((item >> shift) & 0xff))
  252. }
  253. result += partialResult
  254. }
  255. return result
  256. }
  257. }