SHA2.swift 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244
  1. //
  2. // SHA2.swift
  3. // CryptoSwift
  4. //
  5. // Created by Marcin Krzyzanowski on 24/08/14.
  6. // Copyright (c) 2014 Marcin Krzyzanowski. All rights reserved.
  7. //
  8. import Foundation
  9. class SHA2 : CryptoSwift.HashBase {
  10. enum variant {
  11. case sha224, sha256, sha384, sha512
  12. func h() -> [UInt64] {
  13. switch (self) {
  14. case .sha224:
  15. return [0xc1059ed8, 0x367cd507, 0x3070dd17, 0xf70e5939, 0xffc00b31, 0x68581511, 0x64f98fa7, 0xbefa4fa4]
  16. case .sha256:
  17. return [0x6a09e667, 0xbb67ae85, 0x3c6ef372, 0xa54ff53a, 0x510e527f, 0x9b05688c, 0x1f83d9ab, 0x5be0cd19]
  18. case .sha384:
  19. return [0xcbbb9d5dc1059ed8, 0x629a292a367cd507, 0x9159015a3070dd17, 0x152fecd8f70e5939, 0x67332667ffc00b31, 0x8eb44a8768581511, 0xdb0c2e0d64f98fa7, 0x47b5481dbefa4fa4]
  20. case .sha512:
  21. return [0x6a09e667f3bcc908, 0xbb67ae8584caa73b, 0x3c6ef372fe94f82b, 0xa54ff53a5f1d36f1, 0x510e527fade682d1, 0x9b05688c2b3e6c1f, 0x1f83d9abfb41bd6b, 0x5be0cd19137e2179]
  22. }
  23. }
  24. func k() -> [UInt64] {
  25. switch (self) {
  26. case .sha224, .sha256:
  27. return [0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
  28. 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
  29. 0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
  30. 0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
  31. 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
  32. 0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
  33. 0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
  34. 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2]
  35. case .sha384, .sha512:
  36. return [0x428a2f98d728ae22, 0x7137449123ef65cd, 0xb5c0fbcfec4d3b2f, 0xe9b5dba58189dbbc, 0x3956c25bf348b538,
  37. 0x59f111f1b605d019, 0x923f82a4af194f9b, 0xab1c5ed5da6d8118, 0xd807aa98a3030242, 0x12835b0145706fbe,
  38. 0x243185be4ee4b28c, 0x550c7dc3d5ffb4e2, 0x72be5d74f27b896f, 0x80deb1fe3b1696b1, 0x9bdc06a725c71235,
  39. 0xc19bf174cf692694, 0xe49b69c19ef14ad2, 0xefbe4786384f25e3, 0x0fc19dc68b8cd5b5, 0x240ca1cc77ac9c65,
  40. 0x2de92c6f592b0275, 0x4a7484aa6ea6e483, 0x5cb0a9dcbd41fbd4, 0x76f988da831153b5, 0x983e5152ee66dfab,
  41. 0xa831c66d2db43210, 0xb00327c898fb213f, 0xbf597fc7beef0ee4, 0xc6e00bf33da88fc2, 0xd5a79147930aa725,
  42. 0x06ca6351e003826f, 0x142929670a0e6e70, 0x27b70a8546d22ffc, 0x2e1b21385c26c926, 0x4d2c6dfc5ac42aed,
  43. 0x53380d139d95b3df, 0x650a73548baf63de, 0x766a0abb3c77b2a8, 0x81c2c92e47edaee6, 0x92722c851482353b,
  44. 0xa2bfe8a14cf10364, 0xa81a664bbc423001, 0xc24b8b70d0f89791, 0xc76c51a30654be30, 0xd192e819d6ef5218,
  45. 0xd69906245565a910, 0xf40e35855771202a, 0x106aa07032bbd1b8, 0x19a4c116b8d2d0c8, 0x1e376c085141ab53,
  46. 0x2748774cdf8eeb99, 0x34b0bcb5e19b48a8, 0x391c0cb3c5c95a63, 0x4ed8aa4ae3418acb, 0x5b9cca4f7763e373,
  47. 0x682e6ff3d6b2b8a3, 0x748f82ee5defb2fc, 0x78a5636f43172f60, 0x84c87814a1f0ab72, 0x8cc702081a6439ec,
  48. 0x90befffa23631e28, 0xa4506cebde82bde9, 0xbef9a3f7b2c67915, 0xc67178f2e372532b, 0xca273eceea26619c,
  49. 0xd186b8c721c0c207, 0xeada7dd6cde0eb1e, 0xf57d4f7fee6ed178, 0x06f067aa72176fba, 0x0a637dc5a2c898a6,
  50. 0x113f9804bef90dae, 0x1b710b35131c471b, 0x28db77f523047d84, 0x32caab7b40c72493, 0x3c9ebe0a15c9bebc,
  51. 0x431d67c49c100d4c, 0x4cc5d4becb3e42b6, 0x597f299cfc657e2a, 0x5fcb6fab3ad6faec, 0x6c44198c4a475817]
  52. }
  53. }
  54. func resultingArray<T>(hh:[T]) -> [T] {
  55. var finalHH:[T] = hh;
  56. switch (self) {
  57. case .sha224:
  58. finalHH = Array(hh[0..<7])
  59. break;
  60. case .sha384:
  61. finalHH = Array(hh[0..<6])
  62. break;
  63. default:
  64. break;
  65. }
  66. return finalHH
  67. }
  68. }
  69. //FIXME: I can't do Generic fuct out of calculate32 and calculate64 (UInt32 vs UInt64), but if you can - please do pull request.
  70. func calculate32(variant: SHA2.variant) -> NSData {
  71. var tmpMessage = self.prepare()
  72. // hash values
  73. var hh = [UInt32]()
  74. variant.h().map({(h) -> () in
  75. hh.append(UInt32(h))
  76. })
  77. // append message length, in a 64-bit big-endian integer. So now the message length is a multiple of 512 bits.
  78. tmpMessage.appendBytes((message.length * 8).bytes(64 / 8));
  79. // Process the message in successive 512-bit chunks:
  80. let chunkSizeBytes = 512 / 8 // 64
  81. var leftMessageBytes = tmpMessage.length
  82. for var i = 0; i < tmpMessage.length; i = i + chunkSizeBytes, leftMessageBytes -= chunkSizeBytes {
  83. let chunk = tmpMessage.subdataWithRange(NSRange(location: i, length: min(chunkSizeBytes,leftMessageBytes)))
  84. // break chunk into sixteen 32-bit words M[j], 0 ≤ j ≤ 15, big-endian
  85. // Extend the sixteen 32-bit words into sixty-four 32-bit words:
  86. var M:[UInt32] = [UInt32](count: variant.k().count, repeatedValue: 0)
  87. for x in 0..<M.count {
  88. switch (x) {
  89. case 0...15:
  90. var le:UInt32 = 0
  91. chunk.getBytes(&le, range:NSRange(location:x * sizeofValue(le), length: sizeofValue(le)));
  92. M[x] = le.bigEndian
  93. break
  94. default:
  95. let s0 = rotateRight(M[x-15], 7) ^ rotateRight(M[x-15], 18) ^ (M[x-15] >> 3)
  96. let s1 = rotateRight(M[x-2], 17) ^ rotateRight(M[x-2], 19) ^ (M[x-2] >> 10)
  97. M[x] = M[x-16] &+ s0 &+ M[x-7] &+ s1
  98. break
  99. }
  100. }
  101. var A = hh[0]
  102. var B = hh[1]
  103. var C = hh[2]
  104. var D = hh[3]
  105. var E = hh[4]
  106. var F = hh[5]
  107. var G = hh[6]
  108. var H = hh[7]
  109. // Main loop
  110. for j in 0..<variant.k().count {
  111. let s0 = rotateRight(A,2) ^ rotateRight(A,13) ^ rotateRight(A,22)
  112. let maj = (A & B) ^ (A & C) ^ (B & C)
  113. let t2 = s0 &+ maj
  114. let s1 = rotateRight(E,6) ^ rotateRight(E,11) ^ rotateRight(E,25)
  115. let ch = (E & F) ^ ((~E) & G)
  116. let t1 = H &+ s1 &+ ch &+ UInt32(variant.k()[j]) &+ M[j]
  117. H = G
  118. G = F
  119. F = E
  120. E = D &+ t1
  121. D = C
  122. C = B
  123. B = A
  124. A = t1 &+ t2
  125. }
  126. hh[0] = (hh[0] &+ A)
  127. hh[1] = (hh[1] &+ B)
  128. hh[2] = (hh[2] &+ C)
  129. hh[3] = (hh[3] &+ D)
  130. hh[4] = (hh[4] &+ E)
  131. hh[5] = (hh[5] &+ F)
  132. hh[6] = (hh[6] &+ G)
  133. hh[7] = (hh[7] &+ H)
  134. }
  135. // Produce the final hash value (big-endian) as a 160 bit number:
  136. var buf: NSMutableData = NSMutableData();
  137. variant.resultingArray(hh).map({ (item) -> () in
  138. var i:UInt32 = UInt32(item.bigEndian)
  139. buf.appendBytes(&i, length: sizeofValue(i))
  140. })
  141. return buf.copy() as NSData;
  142. }
  143. func calculate64(variant: SHA2.variant) -> NSData {
  144. var tmpMessage = self.prepare(128)
  145. // hash values
  146. var hh = [UInt64]()
  147. variant.h().map({(h) -> () in
  148. hh.append(h)
  149. })
  150. // append message length, in a 64-bit big-endian integer. So now the message length is a multiple of 512 bits.
  151. tmpMessage.appendBytes((message.length * 8).bytes(64 / 8));
  152. // Process the message in successive 1024-bit chunks:
  153. let chunkSizeBytes = 1024 / 8 // 128
  154. var leftMessageBytes = tmpMessage.length
  155. for var i = 0; i < tmpMessage.length; i = i + chunkSizeBytes, leftMessageBytes -= chunkSizeBytes {
  156. var chunk = tmpMessage.subdataWithRange(NSRange(location: i, length: min(chunkSizeBytes,leftMessageBytes)))
  157. // break chunk into sixteen 64-bit words M[j], 0 ≤ j ≤ 15, big-endian
  158. // Extend the sixteen 64-bit words into eighty 64-bit words:
  159. var M = [UInt64](count: variant.k().count, repeatedValue: 0)
  160. for x in 0..<M.count {
  161. switch (x) {
  162. case 0...15:
  163. var le:UInt64 = 0
  164. chunk.getBytes(&le, range:NSRange(location:x * sizeofValue(le), length: sizeofValue(le)));
  165. M[x] = le.bigEndian
  166. break
  167. default:
  168. let s0 = rotateRight(M[x-15], 1) ^ rotateRight(M[x-15], 8) ^ (M[x-15] >> 7)
  169. let s1 = rotateRight(M[x-2], 19) ^ rotateRight(M[x-2], 61) ^ (M[x-2] >> 6)
  170. M[x] = M[x-16] &+ s0 &+ M[x-7] &+ s1
  171. break
  172. }
  173. }
  174. var A = hh[0]
  175. var B = hh[1]
  176. var C = hh[2]
  177. var D = hh[3]
  178. var E = hh[4]
  179. var F = hh[5]
  180. var G = hh[6]
  181. var H = hh[7]
  182. // Main loop
  183. for j in 0..<variant.k().count {
  184. let s0 = rotateRight(A,28) ^ rotateRight(A,34) ^ rotateRight(A,39)
  185. let maj = (A & B) ^ (A & C) ^ (B & C)
  186. let t2 = s0 &+ maj
  187. let s1 = rotateRight(E,14) ^ rotateRight(E,18) ^ rotateRight(E,41)
  188. let ch = (E & F) ^ ((~E) & G)
  189. let t1 = H &+ s1 &+ ch &+ variant.k()[j] &+ UInt64(M[j])
  190. H = G
  191. G = F
  192. F = E
  193. E = D &+ t1
  194. D = C
  195. C = B
  196. B = A
  197. A = t1 &+ t2
  198. }
  199. hh[0] = (hh[0] &+ A)
  200. hh[1] = (hh[1] &+ B)
  201. hh[2] = (hh[2] &+ C)
  202. hh[3] = (hh[3] &+ D)
  203. hh[4] = (hh[4] &+ E)
  204. hh[5] = (hh[5] &+ F)
  205. hh[6] = (hh[6] &+ G)
  206. hh[7] = (hh[7] &+ H)
  207. }
  208. // Produce the final hash value (big-endian)
  209. var buf: NSMutableData = NSMutableData();
  210. variant.resultingArray(hh).map({ (item) -> () in
  211. var i = item.bigEndian
  212. buf.appendBytes(&i, length: sizeofValue(i))
  213. })
  214. return buf.copy() as NSData;
  215. }
  216. }